
Coprocessor Offload Infrastructure for Intel® Many
Integrated Core Architecture

Getting Started Guide

1 About This Document

This document is designed to help developers get started using the Coprocessor Offload

Infrastructure (COI). It contains detailed steps for building and running small COI

applications. Detailed COI API documentation is included in the COI API Reference

Manual, which is part of the Intel® Xeon Phi™ (Phi*) Software installation package.

*Phi is a product family based on the Intel® Many Integrated Core (Intel® MIC)

Architecture.

2 Directories

By default, COI is installed in multiple locations. These locations include:

/usr/share/doc/intel-coi-<version>
Documentation, including this document, the COI

API Reference Manual, and the release notes.
/usr/include Include files needed to build COI applications.

/usr/share/doc/intel-coi-

<version>/tutorials

Simple code samples that can be helpful for

learning how to write COI applications.
/usr/bin COI tools to assist in development.

/usr/lib64

COI shared libraries needed to build COI

applications and the Google Test libraries needed

to run the included smoke tests. Four different

versions of each of these libraries are provided,

with all combinations of host or device and debug

or release.

3 COI Daemon

COI requires a daemon to run on the sink device in order to launch sink processes. This

daemon is a program that runs in the background and listens for SCIF connections from

other nodes. For example, in the typical offload case, the COI daemon will be running on

the Intel MIC Architecture device, and COI applications running on the host will connect

to this daemon to enumerate devices and launch sink processes.

The default installation of the Phi Software stack automatically runs the COI daemon on

the Intel MIC Architecture device. To verify that it is running, type the following

commands on the host console (Note: the IP listed is the default, your administrator may

have changed it):

[joe@joe-dev debug]$ ssh 172.31.1.1

ps –a | grep coi_daemon

 4632 pts/0 00:00:00 coi_daemon

Notice that in this example, the COI daemon is running with process ID 4632.

4 Building and Running Tutorials

The COI release comes with a number of simple code tutorials, including the following:

hello_world

Shows an application with no pipelines that uses

the COI I/O proxy to print output on the source.

This type of usage can be useful if you just want to

run a remote application.

coi_simple
Shows the use of a single pipeline and run

function.
buffers_with_pipeline_function Shows simple buffer operations.

multiple_pipeline_implicit
Shows how to use implicit buffer dependencies to

coordinate between multiple pipelines.

multiple_pipeline_explicit
Shows how to use explicit dependencies to

coordinate between multiple pipelines.

streaming_buffer
Shows how to use streaming buffers to setup a

software processing pipeline.

user_event
Shows how to use user-created barriers for

synchronization between sink and source.

buffer_references
Illustrates the use of buffer reference counting to

implement out-of-order asynchronous operations.

Each tutorial directory contains pre-built binaries as well as the source and make files

needed to rebuild them. The tutorial make files are configured to use the GNU compiler

(GCC) that is included in the Intel Xeon Phi Software release.

The tutorial make files expose a few variables that can be used to configure how they are

built. These are described in the table below.

Variable Name Default Description

HOST_CC g++
The compiler used to build the host

binaries (included with Linux

installation).

DEV_CC_DIR

/opt/mpss/?.?/sysroots/x86_64-

mpsssdk-linux/usr/bin/?1om-

mpss-linux

The directory containing the Intel MIC

Architecture compiler.

DEV_CC
$(DEV_CC_DIR)/x86_64-?1om-

linux-g++
The GCC compiler used to build the Intel

MIC Architecture binaries.

The tutorials can be built by copying a tutorial’s entire directory into a user directory, and

typing make like this:

[joe@joe-dev ~]$ cp –r /usr/share/doc/intel-coi-

<version>/tutorials/hello_world .

[joe@joe-dev ~]$ cd hello_world

[joe@joe-dev hello_world]$ make

mkdir -p debug

g++ -lcoi_host -g -O0 -D_DEBUG -o debug/hello_world_source_host

hello_worl

d_source.cpp

mkdir -p debug

/opt/mpss/?.?/sysroots/x86_64-mpsssdk-linux/usr/bin/?1om-mpss-

linux)/x86_64-?1om-linux-g++ -lcoi_device -march=lrb -Wa,-mtune=k1om –rdy

namic -Wl,--enable-new-dtags -Wl,-rpath=/lib64:/lib -g -O0 -D_DEBUG –o de

bug/hello_world_sink_mic hello_world_sink.cpp

mkdir -p release

g++ -lcoi_host -DNDEBUG -O3 -o release/hello_world_source_host hello_wor

ld_source.cpp

mkdir -p release

/opt/mpss/?.?/sysroots/x86_64-mpsssdk-linux/usr/bin/?1om-mpss-

linux)/x86_64-?1om-linux-g++ -lcoi_device -march=lrb -Wa,-mtune=k1om –r

dynamic -Wl,--enable-new-dtags -Wl,-rpath=/lib64:/lib -DNDEBUG -O3 -o re

lease/hello_world_sink_mic hello_world_sink.cpp

[joe@joe-dev hello_world]$

After building the tutorial, it can be executed by running the host executable, like this:

[joe@joe-dev hello_world]$ cd debug

[joe@joe-dev debug]$./hello_world_source_host

1 engines available

Hello from the sink!

Press enter to kill the sink process.

[joe@joe-dev hello_world]$

5 Using coitrace to assist with debugging

Included in the installation package is a tool called coitrace. This trace utility function

similar to Unix-style tools like strace and shows all of the COI API invocations and

input parameters. This can be helpful to trace what COI commands are being executed

for tracing and debugging. To see a complete list of options run coitrace –h.

To use coitrace simply execute your program through coitrace. For example here is

how the hello_world tutorial would execute through coitrace:

[joe@joe-dev hello_world]$ coitrace ./hello_world_source_host

COIEngineGetCount

 in_ISA = COI_ISA_MIC

 out_pNumEngines = 0x0x7fff28bfea38

1 engines available

COIEngineGetHandle

 in_ISA = COI_ISA_MIC

 in_EngineIndex = 0

 out_pEngineHandle = 0x0x7fff28bfea20

Got engine handle

COIProcessCreateFromFile

 in_Engine = 0x7f98f4370b40

 in_pBinaryName = hello_world_sink_mic

 in_Argc = 0

 in_ppArgv = 0

 (bool) in_DupEnv = false

 in_ppAdditionalEnv = 0

 (bool) in_ProxyActive = true

 in_ProxyfsRoot = (nil)

 in_BufferSpace = 0

 in_LibrarySearchPath = (nil)

 out_pProcess = 0x0x7fff28bfea28

COIProcessCreateFromMemory

 in_Engine = 0x7f98f4370b40

 in_pBinaryName = hello_world_sink_mic

 in_pBinaryBuffer = 0x7f98f4846000

 in_BinaryBufferLength = 10847

 in_Argc = 0

 in_ppArgv = 0

 (bool) in_DupEnv = false

 in_ppAdditionalEnv = 0

 (bool) in_ProxyActive = true

 in_ProxyfsRoot = (nil)

 in_BufferSpace = 0

 in_LibrarySearchPath = (nil)

 in_FileOfOrigin = hello_world_sink_mic

 in_FileOfOriginOffset = 0

 out_pProcess = 0x0x7fff28bfea28

Sink process created, press enter to destroy it.

Hello from the sink!

COIProcessDestroy

 in_Process = 0x24bf440

 in_WaitForMainTimeout = -1

 (bool) in_ForceDestroy = false

 out_pProcessReturn = 0x0x7fff28bfea3f

 out_pReason = 0x0x7fff28bfea34

Sink process returned 0

Sink exit reason SHUTDOWN OK

6 micnativeloadex for remote execution

The micnativeloadex utility included in the package can be used to remotely execute

native code from a host console. This functions similarly to using ssh to start a remote

process but does not require any logins, will automatically transfer dependent libraries

and will redirect console IO back to the host console. Internally micnativeloadex uses

COI so it follows the same library loading rules and requirements for the

SINK_LD_LIBRARY_PATH environment variable.

7 Troubleshooting

As with any development system, sometimes things don’t work as designed. Here are

some techniques that can be done to fix or mitigate problems that may arise. If for some

reason following these steps doesn’t resolve the problem, or if some of these steps need

to be done consistently, please file a defect.

7.1 COIProcessCreate Hangs

If a COIProcessCreate call hangs, there could be a number of culprits. First, check to see

if the Linux uOS on the Intel MIC Architecture device is still active. You can do this by

attempting to ssh to the device:

[joe@joe-dev debug]$ ssh 172.31.1.1

If this works properly, use the ssh session to validate that the COI daemon is still

running:

ps –a | grep coi_daemon

 4632 pts/0 00:00:00 coi_daemon

If the COI daemon is still running, try to restart it, replace micuser with the appropriate

option of user name for your configuration:

killall coi_daemon

[1]+ Terminated /bin/coi_daemon

chmod +x /bin/coi_daemon

/bin/coi_daemon --coiuser=micuser &

7.2 A COI API Returns an Error Code

Sometimes, having an accurate error code doesn’t necessarily make a problem clear. For

example, if COIProcessCreateFromFile returns COI_MISSING_DEPENDENCY, this

indicates that a dynamic library needed by the executable could not be found in the

source or sink file systems. If the debug version of the COI library is used, however,

there is a possibility that more information can be learned by looking at the

automatically-produced log file. This file is named <executable>.coilog, where

<executable> is the name of the source executable. It is located in the current

directory in effect when the application was launched.

8 Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S

TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING

TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY

RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT

DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY

OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to change

without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may

cause the product to deviate from published specifications. Current characterized errata are available on

request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing

your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or go to:

http://www.intel.com/design/literature.htm

9 Legal Notices

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,

duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement, or in the

case of software delivered to the government, in accordance with the software license agreement as defined

in FAR 52.227-7013.

The Intel logo is a registered trademark of Intel Corporation.

Intel, Xeon and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

Other brands and names are the property of their respective owners.

