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Benchmark and Performance Disclaimers 
Software and workloads used in performance tests may have been optimized for performance only on 
Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using 
specific computer systems, components, software, operations and functions. Any change to any of those 
factors may cause the results to vary. You should consult other information and performance tests to 
assist you in fully evaluating your contemplated purchases, including the performance of that product 
when combined with other products. 
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1 Introduction 
 

1.1 About This User Guide 

This user guide describes the Symmetric Communication Interface (SCIF) for the Intel® Xeon 
Phi™ Product Family. SCIF is a component of the Intel® ManyCore Platform Software Stack 
(MPSS). The goal of this document is to present SCIF concepts and usage. Refer to the SCIF 
header file, scif.h, and the SCIF man pages for detailed information on the SCIF API. 

1.2 Target Audience 

The target audience includes tools developers and application developers.  After reading this 
document, the reader will be able to use the SCIF interface for communication between the 
components of a distributed application. 

1.3 Related Documents 

Document Title Revision Number Availability 

MPI overview and specification  http://www.mpi-forum.org/ 

OFED* overview  
http://www.openfabrics.org/OFED-
Overview.html 

 

1.4 Terminology and Acronyms 

Term Description 

API Application Programming Interface 

HCA (Infiniband) Host Channel Adapter 

MIC Intel® Many Integrated Core 

MPSS ManyCore Platform Software Stack 

OFED Open Fabrics Enterprise Distribution 

RMA Remote memory access 

RDMA Remote direct memory access 

 

http://www.mpi-forum.org/
http://www.openfabrics.org/OFED-Overview.html
http://www.openfabrics.org/OFED-Overview.html


 

 7  

  SCIF Users Guide Rev 1.03 – February 2014 Docum 

2 Product Overview 

2.1 Goals and Objectives 

SCIF provides a mechanism for inter-node communication within a single platform, where a 
node is an Intel® Xeon Phi™ coprocessor or an Intel® Xeon® host processor complex.  In 
particular, SCIF abstracts the details of communicating over the PCIe bus while providing an API 
that is symmetric between the host and MIC Architecture devices.  An important design 
objective for SCIF was to deliver the maximum possible performance given the communication 
capabilities of the hardware.  

2.1.1 Portability and Platform Independence 

The Intel® MIC software architecture supports a computing model in which the workload may 
be distributed across both the Intel® Xeon® host processor complex and Intel® MIC Architecture 
coprocessors.  An important property of SCIF is symmetry; SCIF drivers must present the same 
interface on both the host processor and the Intel® MIC Architecture coprocessor in order that 
software written to SCIF can be executed wherever is most appropriate. 

Since the Intel® MIC Architecture coprocessor may use a different operating system than that 
running on the host, the SCIF architecture is designed to be operating system independent.  
This ensures SCIF implementations on different operating systems can inter-communicate. 

2.2 Product Environment 

As mentioned earlier, the Intel® MIC software architecture supports a computing model in 
which the workload is distributed across both Intel® host processors and Intel® MIC 
Architecture coprocessors.  

2.2.1 Hardware Environment 

SCIF supports communication between Xeon host processors and Intel® MIC Architecture 
coprocessors within a single platform. Communication between such components that are in 
separate platforms can be performed using standard communication channels such as 
Infiniband and TCP/IP. 

2.2.2 Software Environment 

A SCIF implementation on a host or Intel® MIC Architecture coprocessor includes both a user 
mode (Ring 3) library and kernel mode (Ring 0) driver as shown in Figure 1. Most of the 
components in the Intel® MPSS use SCIF for communication. Refer to the Intel® Xeon Phi™ 
Coprocessor (codename: Knights Corner) Software Developers Guide for a discussion of the 
other components in the Intel® MPSS and their relationship to SCIF. 
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Figure 1: Intel® ManyCore Platform Software Stack (MPSS) 
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3 SCIF Programming Concepts 
The SCIF driver provides a reliable connection-based messaging layer, as well as functionality 
which abstracts RMA operations. In the following sections we describe these architectural 
concepts in some detail. The SCIF API is documented in the SCIF header file, scif.h, and the SCIF 
man pages. A common API is exposed for use in both user mode (ring 3) and kernel mode (ring 
0), with the exception of slight differences in signature, and several functions which are only 
available in user mode, and several only available in kernel mode. 

3.1 Nodes 

A SCIF node is a physical endpoint in the SCIF network. The host and MIC Architecture devices 
are SCIF nodes. From the SCIF point of view, all host processors (CPUs) under a single OS are 
considered a single SCIF (host) node. 

We generally use “node” instead of “SCIF node” where this will not cause confusion. 

Each node in the SCIF network has a node identifier that is assigned when the platform is 
booted. Node IDs are generally based on PCIe discovery order and, thus, may change across a 
platform reboot, however the host node is always assigned ID 0. 

3.2 Ports 

A SCIF port is a logical destination on a SCIF node. We generally use “port” rather than “SCIF 
port”. Within a node, a SCIF port on that node may be referred to by its number, a 16-bit 
integer. This is analogous to an IP port; for instance, SSH usually talks over TCP port 22. We 
sometimes use “local port” to refer to a port that is on the same node as a particular point of 
reference.  

A SCIF port identifier is unique across a SCIF network, comprising both a node identifier and a 
local port number. A SCIF port identifier is analogous to a complete TCP/IP address (for instance 
192.168.1.240:22). 

Analogous to Internet sockets, some ports may be “well-known”, and monitored by service 
daemons launched with the local OS or later. Any such services are layered on SCIF and thus 
beyond the scope of this document. 

 

3.3 Endpoints and Connections 

The entity through which a port is accessed is called an endpoint. An endpoint can be listening, 
i.e. waiting for a connection request from another endpoint, or connected, i.e. able to 
communicate with a remote connected endpoint. A connection is an association established 
between two endpoints for the purpose of communication. The following functions are used 
during the connection process: 

scif_epd_t scif_open(void); 

int scif_bind(scif_epd_t epd, uint16_t pn); 

int scif_listen(scif_epd_t epd, int backlog); 

int scif_connect(scif_epd_t epd, struct scif_portID* dst); 
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int scif_accept (scif_epd_t epd, struct scif_portID* peer, scif_epd_t*   

    newepd, int flags); 

int scif_close (scif_epd_t epd); 

The process for establishing a connection is similar to socket programming: A process calls 
scif_open() to create a new endpoint; scif_open() returns an endpoint descriptor that is 
used to refer to the endpoint in subsequent SCIF function calls.  The endpoint is then bound to 
a port on the local node using scif_bind().  An endpoint which has been opened and bound 
to a port is made a listening endpoint by calling scif_listen(). To create a connection, a 
process opens an endpoint and binds it to a  local port, and then requests a connection by 
calling scif_connect(), specifying the port identifier of some listening endpoint, usually on a 
remote node. A process on the remote node may accept a pending or subsequent connection 
request by calling scif_accept(). scif_accept() can conditionally return immediately if 
there is no connection request pending, or block until a connection request is received. 
The select() and poll() functions can be used from Linux* user mode to determine when a 
connection request has been received on any of a set of listening endpoints. The scif_poll() 
function may be used from Linux* user and kernel modes, and from Microsoft Windows* user 
mode for this purpose. 

When the connection request is accepted, a new connected endpoint is created, bound to the 
same port as the listening endpoint. The requesting endpoint and the new endpoint are now 
connected endpoints that form the connection. The listening endpoint is unchanged by this 
process. Multiple connections may be established to a port bound to a listening endpoint. 

The following figure illustrates the connection process. In this example, a process on node i calls 
scif_open(), which returns endpoint descriptor epdi. It then calls scif_bind() to bind the 
new endpoint to local port pm, and then calls scif_connect() requesting a connection to port 
pn on node j. Meanwhile, a process on node j calls scif_open(), getting back endpoint 
descriptor epdj, binds the new endpoint associated with epdj to local port pn, and calls 
scif_listen() to mark the endpoint as a listening endpoint. Finally, it calls scif_accept() 
to accept a connection request. In servicing the connection request, scif_accept() creates a 
new endpoint, with endpoint descriptor nepd, which is the endpoint to which epdi is 
connected. The endpoints associated with epdi and nepd are now connected endpoints and 
may proceed to communicate with each other. The listening endpoint associated with epdj 
remains a listening endpoint and may accept an arbitrary number of connection requests.                                                                    
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Node i Node j
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(Nj, pn))

scif_bind(epdi, pm)

scif_bind(epdj, pn)

scif_listen(epdj, qLen)

scif_accept(epdj, 

*nepd, peer)

scif_send(epdi,…)/

scif_recv(epdi,...)

scif_send(nepd,…)/

scif_recv(nepd,...)

epdj=scif_open()

epdi=scif_open()

 
Figure 2: Connecting two endpoints 

Normally the endpoints of a connection are on different nodes in the SCIF network. We 
therefore often refer to these endpoints as local and remote with respect to one end of the 
connection. In fact, SCIF fully supports connections in which both endpoints are on the same 
node, and we refer to this as a loopback connection. 

A process may create an arbitrary number of connections, limited by system resources 
(memory). The following figure illustrates a SCIF network of three nodes. Two connections have 
been established between nodes 0 and 1, another between nodes 0 and 2. On node N2, a 
loopback connection has been established. 
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Figure 3: Connected endpoints 

The endpoint pair comprising the connection are peer endpoints or just peers. Similarly, the 
processes which own the peer endpoints are peer processes, the node on which a peer 
endpoint resides is a peer node, and so on.  

3.4 Messaging Layer 

After a connection has been established, messages may be exchanged between the processes 
owning the connected endpoints. A message sent into one connected endpoint is received at 
the other connected endpoint. Such communication is bi-directional. The following functions 
comprise the messaging layer: 

int scif_send(scif_epd_t epd,void* msg,int len,int flags); 

int scif_recv(scif_epd_t epd,void* msg,int len,int flags); 

Messages are always sent through a local endpoint for delivery at a remote connected 
endpoint. For each connected pair of endpoints, there is a dedicated pair of message queues –
one queue for each direction of communication. In this way, the forward progress of any 
connection is not gated by progress on another connection, which might be the case were 
multiple connections sharing a queue pair. 

A message may be up to 231-1 bytes long. In spite of this, the messaging layer is intended for 
sending short command-type messages, not for bulk data transfers. The messaging layer 
queues are relatively short; a long message is transmitted as multiple shorter queue-length 
transfers, with an interrupt exchange for each such transfer. Therefore it is strongly 
recommended that SCIF RMA functionality be used for sending larger units of data, e.g. longer 
than 4KiB. 
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Messages on any connection are received in the order in which they are sent. There are no 
guarantees regarding the order in which messages sent on different connections are received. 
Moreover, the PCIe bus is assumed to be a reliable transport. Therefore, SCIF makes no attempt 
to detect or correct lost or corrupted messages.  

The content of a message is not interpreted by the messaging layer, and has meaning only to 
the sending and receiving processes. Therefore it is the responsibility of the application to 
impose any required structure or protocol. 

The messaging layer supports both blocking and non-blocking behaviors. A blocking call to the 
scif_send() function will block (not return) until the entire message has been sent. A non-
blocking call to the scif_send() function only sends as much data as there is room in the send 
queue at the time of the call. In both cases, the number of bytes sent is returned as the result 
of the call. The select() and poll() functions can be used from Linux* user mode to 
determine when it is possible to send more data on any of a set of connected endpoints. The 
scif_poll() function may be used from Microsoft Windows* and Linux* kernel mode, and 
from Microsoft Windows* user mode for this purpose. 

Similarly, a blocking call to the scif_recv() function will block until all len bytes (where len 
is a parameter specifying the number of bytes to receive) have been received and copied to the 
application’s buffer. A non-blocking call to the scif_recv() function only returns data that is 
currently in the receive queue (up to some application-specified maximum number of bytes). In 
both cases, the number of bytes received is returned as the result of the call. The select() 
and poll() functions can be used from Linux* user mode to determine when more data is 
available on any of a set of connected endpoints. The scif_poll() function may be used from 
Microsoft Windows* and Linux* kernel modes, and from Microsoft Windows* user mode for 
this purpose. 

3.5 Memory Registration 

Memory registration is the mechanism by which a process exposes ranges of its address space 
for controlled access by another process, typically a process on a remote node. Memory must 
be registered before it can be mapped to the address space of another process or be the source 
or target of an RMA transfer.  

Each connected endpoint has a registered address space, a kind of address space managed by 
the SCIF driver, ranges of which can represent local physical memory. The registered address 
space is sparse in that only specific ranges which have been registered, called registered 
windows or just windows, can be accessed. It is an application error to attempt to access any 
range of a registered address space which is not within such a window. 

We use the term offset to mean a location in a registered address space in analogy to the 
mapping from virtual address space to a shared memory object established by the Posix mmap() 
function. In the Posix mmap() function, an offset parameter specifies the offset, from the 
beginning of the memory object, of the range onto which the virtual address range is mapped. 
Essentially an offset is an address in some registered address space, therefore we sometimes 
talk about a registered address. 

The following functions support registration: 
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off_t scif_register(scif_epd_t epd, void* addr, size_t len, off_t  

      offset, int prot_flags, int map_flags); 

int scif_unregister(scif_epd_t epd, off_t offset, size_t len); 

The scif_unregister() function and window deletion is discussed in a later section. 

[In this and subsequent sections, we talk about ranges in virtual and registered address spaces. 
The reader should understand that these are specified by the (addr,len) and (offset,len) 
parameter pairs respectively. Note, also, that registration granularity is 4KiB (a “small” page). 
Therefore addr, offset and len parameters to scif_register() must be multiples of 
4KiB.] 

The scif_register() function establishes a mapping between a range in the registered 
address space of some connected endpoint of the calling process and a set of physical pages. 
The physical pages are indirectly identified by specifying a range in the user virtual address 
space of the calling process. The mapping, then, is from the specified range in some registered 
address space to the physical pages which back the specified virtual address range. Note that 
this mapping between registered address space and physical memory remains even if the 
specified virtual address range is unmapped or remapped to some different physical pages or 
object.  

In the following figure, the left diagram illustrates a registered window, W, at the time of its 
creation by scif_register(). The pages of W, a range in the registered address space of 
some local endpoint, represent some set, P1, of physical pages in local memory. P1 is the set of 
physical pages which backed a specified virtual address range, VA, at the time that 
scif_register() was executed.  Even if the virtual address range, VA, is subsequently 
mapped to different physical pages P2 (right panel of Figure 4), W continues to represent P1. Of 
course, the process now has no way to access the registered memory in order to read or write 
RMA data unless those physical pages back some other virtual address range. 

For simplicity, we show P1 and P2 as contiguous ranges in physical memory, whereas they may 
be discontiguous. 
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Figure 4: Registration mapping to memory objects 

Though a window is a mapping in the mathematical sense, we generally say that the registered 
address space range of a window represents the corresponding physical pages. This is intended 
to avoid confusion with mappings created by scif_mmap() or mmap()) described later. 

The physical pages which a window represents are pinned (locked) in memory so that they can 
be accessed from a remote SCIF node. Therefore it is an error to specify a virtual address range 
to scif_register() for which the backing pages cannot be pinned for whatever reason. The 
pages which a window represents remain pinned as long as the window exists. As will be 
explained below, a physical page may be represented by more than one window. Such a page 
will remain locked until all such windows are unregistered.  

The scif_unregister() function is used to delete one or more windows and is discussed in 
more detail later. 

Figure 5 illustrates several registered window configurations. It shows the physical space of a 
node which has two connected endpoints, possibly owned by different processes. Each 
endpoint has an independent registered address space associated with it (for simplicity, we do 
not illustrate the virtual memory ranges which the physical ranges back). 

 Windows W1a and W2a represent the same physical address range but have different 
offsets in their respective registered address spaces. 

 W1b and W2b have the same offset (the light gray dashed lines help show this) but 
represent different physical address ranges.  

 W1c and W1d are disjoint windows in the same registered address space, but represent 
overlapping physical address ranges. 

The extra degree of freedom offered by registered address spaces may be useful for solving 
various communication and programming problems. 
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Figure 5: Registered window configurations 

We refer to a window in the registered address space of the peer of a local endpoint as a 
remote window. Every window in the registered address space of a local endpoint is a remote 
window to the peer endpoint. Several SCIF functions (scif_readfrom(), scif_writeto(), 
scif_vreadfrom(), scif_vwriteto(), scif_mmap(), and scif_get_pages()) access 
remote windows or portions thereof, and specified as an offset and length in the registered 
address space of the peer of a specified local endpoint.  

The management of a registered address space can be performed by SCIF, by the application or 
both, and is controlled by the map_flags parameter to scif_register(). When 
SCIF_MAP_FIXED is set in map_flags, SCIF attempts to allocate the window at the registered 
address specified in the offset parameter. Otherwise, SCIF selects a registered address at which 
to allocate the window.  

In Figure 6 the application has create three windows at offsets 0x1000, 0x3000 and 0x5000 
respectively (by passing the SCIF_MAP_FIXED flag), each 0x1000 bytes long. If these offsets are 
coded in the peer application, then it knows the offsets to use to access these windows, for 
example in performing an RMA.  
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Figure 6: Hard coded registered addresses 

 

As an alternative, an application can use the virtual address as the offset when registering a 
window. In this way the application need not “remember” the offset of the window 
corresponding to some virtual address. This is illustrated in Figure 8. 
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Figure 7: Registered addresses same as virtual addresses 
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The scif_register() function also takes a prot_flags parameter which controls access to 
the window being registered. The SCIF_PROT_READ flag marks a window as allowing read 
operations; specifically the window can be the source of an RMA operation. Similarly the 
SCIF_PROT_WRITE flag marks a window as allowing write operations; specifically the window 
can be the destination of an RMA operation.  

The scif_mmap() function (described more fully later) also takes a prot_flags parameter.  
The SCIF_PROT_READ flag indicates that the mapped region is to be readable; it is an error if 
the referenced window was not also registered with the SCIF_PROT_READ flag. Similarly the 
SCIF_PROT_WRITE flag indicates that the mapped region is to be writable; it is an error if the 
referenced window was not also registered with the SCIF_PROT_WRITE flag.  

These flags only control access to windows; they do not control access to the physical pages 
which a window represents where those pages back virtual memory. Thus, referring back to 
Figure 4, the process which registered window W has access to the pages P1 through the virtual 
addresses VA regardless of the protections on window W. Similarly, once a (portion of a) 
window has been mapped using scif_mmap(), the application may read or write to the mapped 
physical pages regardless  of the prot_flags specified when scif_mmap() was called. 
Referring ahead to Figure 9, the process which mapped a range, RR, of remote window RW into 
a range of its address space at VA, can both read and write to pages P through VA, regardless of 
the value of prot_flags. 

3.5.1 Duplication of Endpoint Descriptors Across a fork() 

On Linux*, an endpoint is implemented as a file description, and an endpoint descriptor as a file 
descriptor. If an application opens an endpoint and then fork()’s, the parent and child will each 
have an endpoint descriptor (file descriptor) which refers the same endpoint. The parent and 
child then share the registered address space of this endpoint. Consider the following scenario: 
 
Parent: 

scif_epd_t epd = scif_open(); 

scif_connect(epd, pn); 

fork(); 

off_t po = 

scif_register(epd,addr1,0x1000, 

   0x10000,3,0); 

scif_readfrom(epd,0x20000,len1, 

   roff1,flags); 

 

Child: 

 

 

 

off_t po =  

scif_register(epd,addr2,0x1000, 

   0x20000,3,0); 

scif_readfrom(epd,0x10000,len2, 

   roff2,flags);

After the fork(), both the parent and child have an endpoint descriptor, epd, which refers to the 
endpoint created by the parent. The parent now registers a window at offset 0x10000 that 
represents the physical page backing the page at its addr1. Similarly the child registers a 
window at offset 0x20000 that represents the physical page backing the page at its addr2. 
Because both windows are in the same registered address space, the child can access the 
parent’s memory and vice versa. That is, any memory registered to this endpoint is shared by 
the two processes. For example, each can initiate an RMA which transfers data into the shared 
pages. This behavior, while perhaps surprising, is consistent with fork() semantics regarding 
duplication of file descriptors. 
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3.5.2 Registered Memory Across a fork() 

Linux*’ copy-on-write semantics mean that, following a fork(), both the parent and child 
process will have page table entries pointing to the same physical pages. Because those pages 
are write protected, when one of the processes, either parent or child, writes to a page, the 
hardware will trap the write event. The kernel will respond by allocating a new page and 
copying the contents from the original page, breaking the linkage to the physical page for that 
process. 

Consider the case that a process registers a window and then fork()’s. Suppose the parent now 
writes directly to a virtual address corresponding to a page of the window; it will be allocated a 
new physical page. However, subsequent RMAs to or from the window offset that corresponds 
to that virtual address will, however, access the original physical page at the time of 
registration, not the newly allocated physical page; the physical pages that the window 
represents are unchanged.  Thus, data which the parent process writes to the newly allocated 
page will not be sent when a scif_writeto() RMA is performed, and data received when a 
scif_readfrom() RMA is performed will not be read by the process. 

To prevent this from happening, it is recommended that the parent mark the virtual address 
range of a registered window as MADV_DONTFORK, if the process will fork() after performing 
the registration. Doing this prevents the virtual address range from being seen by the child, so it 
is only seen by the parent, and copy-on-write semantics do not apply to that range. 

A similar problem can occur if a process registers a window after a fork() in which the virtual 
address range was allocated before the fork(), since that virtual address range might now be 
subject to copy-on-write semantics. There are several possible solutions to this problem: 

 Mark the virtual address range to be registered as MADV_DONTFORK before the fork(). 
The virtual address range will now only be available for registration by the parent. 

 (After the fork…) In one or the other process, write to all the pages of the range to force 
new pages to be allocated 

3.5.3 Kernel Mode Registration-Related API 

Several additional functions are available in kernel mode to solve specific programming 
requirements: 

int scif_pin_pages(void* addr, size_t len, int prot_flags, int  

    map_flags, scif_pinned_pages_t* pages); 

int scif_unpin_pages(scif_pinned_pages_t pinned_pages); 

off_t scif_register_pinned_pages(scif_epd_t epd, scif_pinned_pages_t  

    pinned_pages, off_t offset, int map_flags); 

scif_pin_pages() pins the set of physical pages which back a range of virtual address space, 
and returns a handle which may subsequently be used in calls to scif_register_pinned_-
pages() to create windows which represent the set of pinned pages. The windows so created 
are otherwise identical to windows created by scif_register(). The handle is freed by 
scif_unpin_pages(), but the physical pages themselves remain pinned as long as there is a 
window which represents the pages. Unlike scif_register() which interprets the address 
passed it as a user space address, scif_pin_pages() interprets the address passed it as a 
kernel space address if the map_flags parameter has the SCIF_MAP_KERNEL flag. 
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Figure 8 illustrates this process. In the leftmost panel, scif_pin_pages() pins the set of 
physical pages, P1, which back some range, VA, of virtual address space. In the center panel, a 
window, W1, is registered, using scif_register_pinned_pages(), at some offset in some 
Registered Address Space 1, and represents the physical pages P1. In the rightmost panel, a 
second window, W2, is registered, again using scif_register_pinned_pages(), at some 
offset in some Registered Address Space 2, and also represents the physical pages P1. At the 
same time, the mapping of VA has been changed to the set of physical pages, P2, but windows 
W1 and W2 continue to represent P1.  

Virtual Address 

Space

Registered Address 

Space 2

Physical Address 

Space

VA

P1

0

Registered Address 

Space 1

VA

W1

P1

VA

W1

P1P2

W2

 
Figure 8: Registering windows using scif_pin_pages() 

3.6 Mapped Remote Memory 

The SCIF mapping functions enable mapping some physical memory on a remote node into the 
virtual address space of a process. Once established, a read or write access to such a mapped 
range of virtual address space will read or write to the corresponding mapped physical memory 
location. The mapping functions are: 

void* scif_mmap(void* addr, size_t len, int prot_flags, int map_flags,  

    scif_epd_t epd, off_t offset); 

int scif_munmap (void* addr, size_t len); 

Note that these functions are only available in the user mode API. 

The mapping established by a scif_mmap() operation is illustrated in the following figure: 



 

 21  

  SCIF Users Guide Rev 1.03 – February 2014 Docum 

Remote Physical Address 

Space

Remote Registered 

Address Space

Local Process Virtual 

Address Space
VA

P

RR

0

Local Node

Remote Node

RW

 
Figure 9: Address space mapping of scif_mmap() 

The process performing the scif_mmap() operation specifies a range, VA, within its local virtual 
address space, and a corresponding range, RR, of the same length within a peer remote 
registered address space. The composition of the mapping from VA to RR and the mapping 
from RR to P, the set of physical pages represented by RR, defines a mapping (black lines) from 
VA to P. scif_mmap() modifies the page table of the process according to this mapping. Hence, 
reads from and writes to VA will actually read from or write to corresponding locations in the 
physical pages P.  
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Figure 10: Virtual address space mapping that intersects multiple windows 

The remote registered address range may not intersect any portion of the remote virtual 
address space which is not within a window, but may intersect multiple remote windows. 
Therefore those multiple windows must be contiguous in their registered address space.  In 
Figure 10, RR intersects windows RW1 and RW2, which represent physical memory ranges P1 
and P2 respectively. Thus access to an address in VA will be vectored to a page in P1 or P2 
depending on whether the address in VA maps to RW1 or RW2. 
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While a remote mapping exists, the remote pages remain pinned and available for access, even 
if the peer endpoint referenced when the mapping was created is closed, either explicitly or 
because the peer process is killed. scif_munmap() unmaps some range of pages in the callers 
address space. Subsequent access to such virtual pages results in a segmentation fault. 
scif_munmap() does not take an endpoint parameter; if a page in the specified range was not 
mapped using scif_mmap(), the effect will be as if mmap() was called on that page. 

3.6.1 Kernel Mode Mapping-Related API 

The kernel mode API provides a similar capability to scif_mmap() through the scif_get_-
pages() and scif_put_pages() functions. scif_get_pages() takes a range in some remote 
window and returns a structure listing the physical addresses of pages which are represented 
by the registered address space range. Those physical pages will continue to be available until 
the structure obtained from scif_get_pages() is returned in a call to scif_put_pages(). 

3.7 Remote Memory Access 

SCIF RMA operations are intended to support the one-sided communication model which has 
the advantage that a read/write operation can be performed by one side of a connection when 
it knows both the local and remote locations of data to be transferred. One-sided calls can 
often be useful for algorithms in which synchronization would be inconvenient (e.g. 
distributed matrix multiplication), or where it is desirable for tasks to be able to balance their 
load while other processors are operating on data.  

The following functions comprise the RMA group: 

int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len, off_t  

    roffset, int rma_flags); 

int scif_writeto(scif_epd_t epd, off_t loffset, size_t len, off_t  

    roffset, int rma_flags); 

int scif_vreadfrom(scif_epd_t epd, void* addr, size_t len, off_t  

    offset, int rma_flags); 

int scif_vwriteto(scif_epd_t epd, void* addr, size_t len, off_t  

    offset, int rma_flags); 

The scif_readfrom() and scif_writeto() functions perform DMA or CPU based read and 
write operations, respectively, between physical memory of the local and remote nodes of the 
specified endpoint and its peer. The physical memory is that which is represented by specified 
ranges in the local and remote registered address spaces of a local endpoint and its peer 
remote endpoint. Specifying these registered address ranges establishes a correspondence 
between local and remote physical pages for the duration of the RMA operation. The rma_-
flags parameter controls whether the transfer is DMA or CPU based. 

Figure 11 below illustrates such a mapping. The process performing the operation specifies a 
range, LR, within the registered address of one of its connected endpoints, and a corresponding 
range, RR, of the same length within the peer endpoint’s registered address space. Each 
specified range must be entirely within a previously registered window or contiguous windows 
of the corresponding registered address spaces. The solid green lines represent the 
correspondence between the specified ranges in the local and remote registered address 
spaces; the dashed green lines represent the projections into their respective physical address 
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spaces.  This defines an overall effective correspondence (black lines) between the physical 
address space of the local node and that of the remote node of the peer registered address 
space. 

Hence, a DMA operation will transfer data between LP and RP (again, LP and RP are typically 
not contiguous).  
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Figure 11: scif_readfrom()/scif_writeto()address space mapping  

scif_vreadfrom() and scif_vwriteto() are variants of scif_readfrom() and 
scif_writeto(). Rather than taking a local registered address space range parameter, these 
functions take a local user address space range, V. Transfers are then between the local 
physical pages, LP, which back V, and the remote physical pages, RP which are represented by 
RR. The resulting address space mapping is illustrated in Figure 12. 
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Figure 12: scif_vreadfrom()/scif_vwriteto()address space mapping 
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If it is known that a buffer will be used multiple times as the source or destination of an RMA, 
then it is typically beneficial to scif_register() the buffer and use scif_readfrom() and 
scif_writeto() to perform the transfers. However, if it’s known that the buffer will only be 
used once, or if it is unknown if the buffer will be used multiple times (this might be the case in 
a library on top of SCIF), then using scif_vreadfrom() and scif_vwriteto() may provide a 
performance advantage as compared to registering some window in the local registered 
address space, performing a single RMA operation to or from that window, and then 
unregistering the window.  

As mentioned above, in some cases it is not known whether a local buffer will be used in 
subsequent transfers. For this case, the scif_vreadfrom() and scif_vwriteto() functions 
have a caching option. When the rma_flags parameter includes the SCIF_RMA_USECACHE 
flag, physical pages that were pinned in order to perform the RMA may remain pinned after the 
transfer completes. This may reduce overhead if some or all of the same virtual address range is 
referenced in a subsequent execution of scif_vreadfrom() or scif_vwriteto() since 
pinning pages has relatively high overhead. A cached page is evicted from the cache in the 
event that it no longer backs the user space page that it backed when first cached. 

3.7.1 DMA Ordering 

The Intel® Xeon Phi™ Coprocessor DMA engine does not maintain write ordering. That is some 
written data may become visible before written data with a lower address. This might be an 
issue if the process to which data is being transferred polls the last byte of a buffer for some 
trigger value as an indication that the transfer has completed.  

When the rma_flags parameter includes the SCIF_RMA_ORDER flag, the last cacheline or 
partial cacheline of the transfer is written after the all other data in the transfer is written. 
There is slight performance penalty for invoking this feature.  

Similarly, the order in which any two RMA transfers complete is indeterminate. SCIF 
synchronization functions, described in the next section, can be used to synchronize to the 
completion of RMA transfers.  

3.8 RMA Synchronization 

SCIF supports the ability of a process to synchronize with the completion of RMA operations 
previously initiated against one of its endpoints, or against a peer of one of its endpoints. The 
following functions comprise the synchronization group: 

int scif_fence_mark(scif_epd_t epd, int flags, int* mark); 

int scif_fence_wait(scif_epd_t epd, int mark); 

int scif_fence_signal(scif_epd_t epd, off_t loff, uint64_t lval, off_t  

    roff, uint64_t rval, int flags); 

There are two synchronization methods available. The first method uses both the 
scif_fence_mark() and  scif_fence_wait() functions. The scif_fence_mark() function 
marks the set of RMAs previously initiated against a specified endpoint or against its peer, and 
which have not yet completed. scif_fence_mark() returns a handle to the application which 
the application can later pass to scif_fence_wait() in order to await completion of all RMAs 
in the marked set. If the flags parameter has the SCIF_FENCE_RAS_SELF flag, then 
scif_fence_mark() marks RMAs initiated through the local endpoint. If the flags parameter 
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has the SCIF_FENCE_RAS_PEER flag, then scif_fence_mark() marks RMAs initiated through 
the peer endpoint. flags can have only one of these flags values. 
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Figure 13: scif_fence_mark()/scif_fence_wait() 

This is illustrated in Figure 13 (the triangles are meant to indicate RMA progress over time). 
RMA1 and RMA2 are initiated at times t1 and t2, respectively, against some endpoint descriptor 
epd. At time t3, scif_fence_mark() is called,  marking RMA1 and RMA2 as members of some 
set, and returning a handle m to that set. At time t4, RMA3 is initiated. The application then 
calls scif_fence_wait() at time t5 to await the completion of RMAs in the set indicated by 
handle m. scif_fence_wait() then returns at time t6 when RMA1 completes. 

The second synchronization method uses the scif_fence_signal().  This function returns 
after conceptually marking the set of RMAs previously initiated against a specified endpoint or 
against its peer endpoint, and which have not yet completed. Like scif_fence_mark(), if the 
flags parameter has the SCIF_FENCE_RAS_SELF flag, then scif_fence_mark() marks RMAs 
initiated through the local endpoint. If the flags parameter has the SCIF_FENCE_RAS_PEER 
flag, then scif_fence_mark() marks RMAs initiated through the peer endpoint. flags can 
have only one of these flags values. 

When all the RMAs in the marked set have completed, an application specified value, lval,  is 
written to a specified offset, loff,  in the registered address space of a local endpoint and/or 
another application specified value, rval, is written to another specified offset, roff, in the 
registered address space of the peer of the local endpoint, as specified by the 
SCIF_SIGNAL_LOCAL and SCIF_SIGNAL_REMOTE flag values. Each specified offset must be 
within a registered window of the corresponding registered address space.  

The local process and/or the peer process may poll the virtual address which maps to the 
specified registered address space offset waiting for the specified value(s) to be written. 

scif_fence_signal() is illustrated in Figure 14 in which the same sequence of RMAs is 
initiated. The application calls scif_fence_signal() at time t3, passing a local offset, loff, 
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and a value, v to be written to loff. Then  scif_fence_signal() returns after marking 
RMA1 and RMA2, that were previously initiated and have not completed. At time t6, when all 
RMAs in the marked set have completed, a value v is written to the registered address space at 
offset loff. (For simplicity, we don’t try to illustrate writing to values to both the local and 
remote registered address spaces.) 
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Figure 14: scif_fence_signal() 

Note that marking a set of RMAs does not impose a barrier. That is, an RMA that is submitted 
after a set of RMAs is marked can begin transferring, and even complete its transfer, before the 
marked set completes. This is the case for both synchronization methods. For example, in the 
figure above RMA3 is shown to access some of the same registered address range as RMA1 
while RMA1 is in progress. Thus if RMA1 is a transfer to some memory and RMA3 is a transfer 
out of some of the same memory, RMA3 would likely not transfer out the expected data in this 
case. It is the application’s responsibility to order RMAs as needed by using SCIF 
synchronization functionality to await the completion of previous RMAs before subsequent 
RMAs are submitted. In this case, the application should wait until after RMA1 and RMA2 have 
completed by polling for v before initiating RMA3: 
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Figure 15: Using scif_fence_signal() 

In the case that an application must wait for a DMA transfer to complete before it can do any 
other work, it can use either of the two fence mechanisms described above. Alternatively, if the 
rma_flags parameter of any RMA API includes the SCIF_RMA_SYNC flag, then control will not 
return to the application until the RMA has completed. 

3.9 Registered Window Deletion 

The scif_unregister() function is used to delete one or more registered windows, as 
specified by a local endpoint and a range within that endpoint’s registered address space. The 
range must completely encompass zero or more windows. Deleting a portion of a window is not 
supported. 

After scif_unregister() is called to delete a window, the registered address space range of 
the window is no longer available for use in calls to scif_mmap(), scif_get_pages(), 
scif_readfrom(), scif_writeto(), scif_vreadfrom(), scif_vwriteto() and 
scif_fence_signal(). However,  the window continues to exist until all references to the 
window are removed. A window is referenced if there is a mapping to it created by 
scif_mmap(), or if scif_get_pages()  was called against the window (and the pages have 
not been returned via scif_put_pages()). A window is also referenced while an RMA, in 
which some range of the window is a source or destination, is in progress. Finally a window is 
referenced while some offset in that window was specified to scif_fence_signal(), and the 
RMAs marked by that call to scif_fence_signal() have not completed. Until the window is 
deleted, no portion of its registered address space range can be used to create a new window, 
and all the physical pages represented by that window remain locked. 

A physical page can be represented by multiple windows; for example, see cases 1 and 3 in 
Figure 5 above. Such a page remains locked until all the windows which represent it are 
deleted. 
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3.10  Connection Termination 

We distinguish between normal connection termination that is triggered by one of the 
processes at each end of a connection, and abnormal termination triggered when a node 
becomes “lost”. 

3.10.1 Normal Connection Termination 

A connection is terminated when scif_close() is called on one of its endpoints. The following 
steps describe the process of closing an endpoint, and apply to both the local endpoint and its 
peer.  

 Further operations through the closing endpoint are not allowed, with the exception 
described below.  

 All previously initiated RMAs to or from windows of the endpoint are allowed to 
complete. 

 Blocked calls to scif_send() or scif_recv() through the closing endpoint are 
unblocked and return the number of bytes sent or received, or return the ECONNRESET 
error if no data was sent or received. 

 Each window of the closing endpoint is unregistered as described for 
scif_unregister(). In particular, the physical pages represented by each window 
remain locked until all references to the window are removed. Thus mappings to its 
windows previously established by scif_mmap() remain until removed by 
scif_mmap(), scif_munmap(), or standard functions such as mmap() and munmap(), or 
until the process holding the mapping is killed. In kernel mode, it is an error to call 
scif_close() on an endpoint for which there are outstanding physical page addresses 
obtained from scif_get_pages(). 

If an endpoint was closed because its peer was closed, scif_recv() can be called on the local 
endpoint while its receive buffer is non-empty and will return data until the receive queue is 
empty, at which time it returns the ECONNRESET error. This allows an application to send a 
message, and then close the local endpoint without waiting somehow for the message to be 
received by the remote endpoint. 

In all other cases, a SCIF function call returns the ECONNRESET error if it references an endpoint 
that is no longer connected because the peer endpoint was closed. 

3.10.2 Abnormal Connection Termination 

When a node in the SCIF network is lost and must be reset for some reason, the SCIF driver on 
each other node will kill() any user mode process which has scif_mmap()’d pages from the lost 
node. This is done to prevent corruption of the memory of the lost node after it is reset.  

Access to any remaining endpoint which was connected to an endpoint on the lost node now 
returns the ECONNRESET error. The application may scif_close() such an endpoint as part of 
cleaning up from the loss of the node. 

Each kernel mode module that uses SCIF must register a callback routine with the SCIF driver: 

void scif_event_register (scif_callback_t handler); 

that is the routine to be called in the event that a node is added or is lost and must be reset. 
Upon being called with the SCIF_NODE_REMOVED event, and before returning, the event 
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handler must return, using scif_put_pages(), all structures obtained using scif_get_pages() 
against an endpoint connected to the lost node. It is recommended and expected that the 
handler will also scif_close() all endpoints connected to the lost node. 

3.11 Process Termination 

When a process is terminated, either normally or abnormally, the following steps are 
performed: 

 All remote mappings previously created by scif_mmap() are removed as if 
scif_munmap() were called on the mapping. 

 Physical page addresses obtained from scif_get_pages() are effectively returned as 
if scif_put_pages() were called. 

 Each endpoint owned by the process is closed as if scif_close() were called on the 
endpoint. 

3.12  User Mode Utility Functions 

Several utility functions are defined in the SCIF user mode API: 

int scif_get_nodeIDs(uint16_t* nodes, int len, uint16_t* self); 

static int scif_get_fd(scif_epd_t epd); 

int scif_poll(struct scif_pollepd* epds, unsigned int nepds, long 

    timeout); 

The scif_get_nodeIDs() function may be called to obtain the IDs of the nodes currently in 
the SCIF network. This function also returns the ID of the node on which  the calling process is 
executing. 

scif_get_fd() returns the file descriptor which backs a specified endpoint descriptor, epd. 
The file descriptor returned can be used when calling poll() or select(). It should in this way. This 
function is only available in the Linux* user mode API 

scif_poll() waits for one of a set of endpoints to become ready to perform an I/O operation; 
it is syntactically and semantically very similar to poll() . The SCIF functions on which 
scif_poll() waits are scif_accept(), scif_send(), and scif_recv(). Consult the SCIF 
header file, scif.h, and the SCIF man pages for details on scif_poll() usage. 

3.13 Kernel Mode Utility Functions 

The scif_get_nodeIDs() and scif_poll() functions are available in kernel mode. In 
addition, the scif_pce_dev() function: 

int scif_pci_dev(uint16_t node, struct pci_dev** pdev); 

returns the pci_dev structure pointer associated with specified SCIF node. This structure can 
then be used in standard Linux* kernel functions to refer to an Intel® Xeon Phi™ coprocessor. 
For example the pci_dev structure can be used to obtain system bus addresses from a virtual 
address or page pointer in calls to Linux* PCIe mapping APIs like pci_map_single() or 
pci_map_page(). 
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4 Programming Considerations 

4.1 Unaligned DMAs 

The Intel® Xeon Phi™ Coprocessor DMA engine supports cacheline aligned transfers. That is, 
starting and ending addresses of DMA transfers must be a multiple of 64. SCIF RMA APIs 
(scif_readfrom(), scif_writeto(), scif_vreadfrom(), scif_vwriteto()) may be specified with any 
alignment: The source and destination may have any alignment, these alignments may differ, 
and the length of a transfer need not be a multiple of 64. 

When a request is made to use DMA for a transfer that is not cacheline aligned, SCIF uses a 
combination of DMA and programmed I/O to implement the transfer. Such transfers will have 
lower performance than the cacheline aligned transfers. Therefore, optimal DMA performance 
will likely be realized if both source and destination base addresses are cacheline aligned. Lower 
performance will likely be realized if the source and destination base addresses are not 
cacheline aligned but are separated by some multiple of 64. The lowest level of performance is 
likely if source and destination base addresses are not separated by a multiple of 64. 

A suggested workaround is to pad data allocations to ensure cacheline alignment of data 
structures that are to be DMA’d.  

4.2 Synchronization Overhead 

The scif_fence_mark() and scif_fence_wait() functions should be used somewhat 
judiciously in order to minimize overhead. For example, an application might call 
scif_fence_mark() after each RMA, and then later chose on which mark(s) to wait. Such a 
sequence can have a negative impact on BW, particularly where transfers are small. 

4.3 Large pages 

SCIF registration and DMA performance will be better if the buffers being registered are backed 
by huge pages. SCIF registration is improved because the driver requires fewer data structures 
to accurately store meta-data about huge pages which are contiguous in physical memory as 
compared to storing the meta data for every 4K page. SCIF DMA performance is improved since 
the software overhead for programming DMA descriptors is reduced. SCIF detects and 
optimizes for huge pages transparently. The user does not need to specify if a virtual address 
region is backed by huge pages or not. Maximum performance benefits will be seen if both 
source and destination buffers are backed by huge pages. 


