

Intel® Manycore Platform Software Stack

(Intel® MPSS)

User's Guide

Copyright © 2013-2014 Intel Corporation

All Rights Reserved

Revision: 3.4

World Wide Web: http://www.intel.com

(Intel® MPSS)

ii Document Number: 330076-001US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU

PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND

EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH

ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,

MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any

features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or

incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The Intel® MIC Architecture coprocessors described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

The code names Knights Ferry, Aubrey Isle, and Knights Corner presented in this document are only for use by Intel to identify products, technologies, or services

in development, that have not been made commercially available to the public, i.e., announced, launched or shipped. They are not “commercial” names for

products or and are not intended to function as trademarks.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or

go to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, Intel® Pentium®, Intel® Pentium® Pro, Xeon®, Intel® Xeon Phi™, Intel® Pentium® 4 Processor, Intel Core™ Solo, Intel® Core™ Duo, Intel Core™

2 Duo, Intel Atom™, MMX™, Intel® Streaming SIMD Extensions (Intel® SSE), Intel® Advanced Vector Extensions (Intel® AVX), Intel® VTune™ Amplifier XE are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2014 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Overview

User's Guide iii

Revision History

Release
Number

Description Revision Date

3.3 Revised section 14.3.9, 2.2, 2.3. Created sections 11.4, 11.4.1, and

11.4.2, edited and updated data for release 3.4. , Edited section

14.4.5.4, Added Conventions and Symbols table to Section 1.3.

Edited sections 7.5, 7.6, 7.7, 7.10, 7.12, and 9.1. Corrected figure 2

in Section 13. Edited Section 7.16., Reviewed and corrected notes

where necessary. Added Chapter 18 General Services Tutorial.

Edited sections 14.4.5.3, 15.3.12.2, and 15.3.13, Replaced Sections

2.1 – 2.5

April 2014

3.3 Minor edits Chapter 2,9 , Title changes to Chapter 2 section

headings,

May 2014

3.3 Minor edits throughout, Adjusted User Prompts to reflect card vs.

host.

June 2014

3.3 7.5 added method 1 and method 2 to differentiate between the two

options. Added to 7.6 example [host]# micctrl --rpmdir=<path to

K1OM directory> Modified section 7.10 instructions to fix holes and

broken directory structures. Fixed several indententations, and

removed a few page breaks that were no longer needed through out

section 7. Fixed host based authentication instructions. Still need to

be verified. changed several commands that spanned two lines / into

single line commands. Document needs fonts, font size, and

indentation cleanup. Most changes have been verified by two or

more people. It's not perfect, but we are out of itme.

Minor edits throughout the document.

July 2014

3.4 Moved footnote reference to beginning of the “service” command.

Multiple edits for 3.4.

August 2014

(Intel® MPSS)

iv Document Number: 330076-001US

Contents

1 Overview .. 1

1.1 Technology Previews .. 2

1.2 Supported Intel® Tools .. 2

1.3 Conventions and Symbols .. 3

2 Installing Intel MPSS with OFED Support (optional) 2

2.1 Requirements .. 2

2.2 Steps to Install Intel MPSS using OFED+ .. 3

2.3 Steps to Install Intel MPSS using OFED 1.5.4.1 5

2.4 Steps to Install Intel MPSS using OFED-3.5-2-mic 7

2.5 Steps to Install Intel MPSS using Mellanox* OFED 2.1/2.2 8

2.6 Starting Intel MPSS with OFED Support ... 8

2.7 Stopping Intel MPSS with OFED Support ... 9

3 Installing Intel MPSS with GANGLIA* Support (optional) 10

3.1 Requirements .. 10

3.2 Steps to Install Intel MPSS with GANGLIA* Support 11

3.2.1 Installing Intel MPSS GANGLIA* RPMs in the Card 12

3.3 Starting Intel MPSS with GANGLIA* Support 12

3.4 Stopping Intel MPSS with GANGLIA* Support 12

4 Installing Intel® Xeon Phi™ Coprocessor Performance Workloads

(optional) ... 13

4.1 Requirements .. 13

4.2 Distributed Files ... 14

4.3 RPM Installation ... 14

4.4 Python Installation .. 14

4.5 Alternative to Python Installation ... 15

5 Installing Intel MPSS with Reliability Monitor Support (optional) 16

5.1 Overview ... 16

5.2 Requirements .. 16

5.3 Steps to Install Intel MPSS with Reliability Monitor Support........ 16

Overview

User's Guide v

5.4 Starting Intel MPSS with Reliability Monitor Support 17

5.5 Stopping Intel MPSS with Reliability Monitor Support 17

5.6 Reliability Monitor Configuration File and Log 17

6 Post Installation Quick Configuration ... 18

6.1 Step 1: Ensure Root Access .. 18

6.2 Step 2: Generate the Default Configuration 18

6.3 Step 3: Change Configuration .. 18

6.4 Step 4: Start the Intel MPSS Service .. 18

7 Intel MPSS Configuration .. 20

7.1 Intel MPSS Configuration Overview ... 20

7.2 Clock Source for the Intel® Xeon Phi™ Coprocessor 20

7.3 Peer to Peer (P2P) Support.. 20

7.4 NFS Mounting a Host Export ... 21

7.5 How to Login to the Intel® Xeon Phi™ Coprocessor by LDAP

Account .. 22

7.6 How to Login to the Intel® Xeon Phi™ Coprocessor by NIS/YP

Account .. 24

7.7 How to Enable NFS Auto Mount with NIS/YP on the Intel® Xeon

Phi™ Coprocessor .. 25

7.8 How to Enable Host Based Authentication on SSH 27

7.9 How to Mount a Share using NFS v4 ... 28

7.10 How to Customize MIC OS ... 29

7.11 Virtual Console Configuration and Access .. 32

7.12 Enable Virtio Block Device for the Intel® Xeon Phi™

Coprocessor ... 33

7.12.1 To use virtio as a swap device file system 34

7.13 Kernel Crash Dump Support for the Intel® Xeon Phi™

Coprocessor ... 34

7.14 Offload User Options .. 35

7.15 Process Oversubscription ... 36

7.16 Coprocessor Post Codes .. 37

8 Tools .. 40

8.1 Micinfo .. 40

8.2 Micflash .. 40

(Intel® MPSS)

vi Document Number: 330076-001US

8.3 Micsmc ... 40

8.4 Miccheck .. 41

8.5 Micnativeloadex .. 41

8.6 Micctrl ... 42

8.7 Micrasd... 42

8.8 Mpssflash .. 43

8.9 Mpssinfo .. 43

8.10 Intel® Xeon Phi™ Coprocessor Shell Environment 43

9 Recompiling Modules and RPMs from the Intel MPSS Release 44

9.1 Recompiling the Intel MPSS RPM specifically for OFED 44

9.2 Recompiling the Intel MPSS GANGLIA* Modules 45

9.3 Recompiling the Intel MPSS MIC Management Modules 46

9.4 How to Extract and Use the MYO Open Source Distribution 47

9.5 How to Extract and Use the COI Open Source Distribution 49

10 Supported Environments for the Intel MPSS 3.4 Release 53

10.1 Supported Environments .. 53

10.2 Compiling Supported Environments ... 53

10.3 User Mode Code for Symmetric Communications Interface

(SCIF) ... 54

10.4 Registration Caching in SCIF .. 54

10.5 GNU Debugger (GDB) for the Intel® Xeon Phi™ Coprocessor 55

10.6 Ulimit Checks for Max Locked Memory in SCIF 56

11 Important Considerations ... 57

11.1 Disabling and Enabling Power Management 57

11.2 Disabling and Enabling the Memory Control Group (cgroup)....... 57

11.3 Installing Card Side RPMs .. 58

11.3.1 Copy RPMs to the Card Using SCP .. 58

11.3.2 Copy RPMs to Card Using a Repo and Zypper (via HTTP)59

11.3.3 Use the Micctrl Utility ... 60

11.4 BIOS Setting and Process Affinity ... 60

11.4.1 BIOS Setting .. 60

11.4.2 Process Affinity ... 61

Overview

User's Guide vii

12 Intel MPSS Boot Configuration Details ... 62

13 Intel MPSS Boot Process ... 63

13.1 Booting the Intel® Xeon Phi™ Coprocessor 64

13.1.1 Kernel Command Line .. 64

13.1.2 Instruct the Driver to Boot the Intel® Xeon Phi™

Coprocessor .. 64

13.1.3 Linux* Kernel Executes ... 65

13.1.4 Root is the Initial Ram Disk ... 65

13.1.5 Root is a Ram Disk Image .. 65

13.1.6 Root is an NFS Export .. 65

13.1.7 Notify the Host that the Intel® Xeon Phi™ Coprocessor

System is Ready ... 66

14 Configuration ... 67

14.1 Configurable Components .. 67

14.2 Configuration Files .. 68

14.2.1 Configuration File Location ... 68

14.2.2 Configuration File Format ... 69

14.2.3 Configuration Version ... 69

14.2.4 Including Other Configuration Files .. 69

14.3 Configuring Boot Parameters .. 70

14.3.1 What to Boot .. 70

14.3.2 When to Boot ... 70

14.3.3 VerboseLogging Kernel Command Line Parameter 70

14.3.4 Console Kernel Command Line Parameter 71

14.3.5 ExtraCommandLine Kernel Command Line Parameter ... 71

14.3.6 PowerManagement Kernel Command Line Parameter 72

(Intel® MPSS)

viii Document Number: 330076-001US

14.3.7 ShutdownTimeout Parameter .. 72

14.3.8 CrashDump Parameter... 72

14.3.9 Cgroup Parameter .. 72

14.3.10 RootDevice Kernel Command Line Parameter 73

14.4 Root File System .. 74

14.4.1 File Location Parameters ... 74

14.4.2 Intel MPSS RPM Location .. 76

14.4.3 User Access .. 76

14.4.4 Service Startup ... 76

14.4.5 Network Access ... 77

15 The micctrl Utility ... 83

15.1 Card State Control .. 83

15.1.1 Waiting for Intel® Xeon Phi™ Coprocessor State Change83

15.1.2 Booting Intel® Xeon Phi™ Coprocessors.............................. 84

15.1.3 Shutting Down Intel® Xeon Phi™ Coprocessors 84

15.1.4 Rebooting Intel® Xeon Phi™ Coprocessors 84

15.1.5 Resetting Intel® Xeon Phi™ Coprocessors 84

15.1.6 Intel® Xeon Phi™ Coprocessor Status 85

15.2 Configuration Initialization and Propagation 85

15.2.1 Initializing the Configuration Files ... 85

15.2.2 Propagating Changed Configuration Parameters 86

15.2.3 Resetting Configuration Parameters 87

15.2.4 Cleaning Configuration Parameters .. 87

15.3 Helper Functions for Configuration Parameters 88

15.3.1 Change the Networking Configuration Parameters 88

Overview

User's Guide ix

15.3.2 Change the UserAuthentication Configuration Parameter92

15.3.3 Initializing The Intel® Xeon Phi™ Coprocessor Password

File ... 92

15.3.4 Adding Users to the Intel® Xeon Phi™ Coprocessor File

System ... 93

15.3.5 Removing Users from the Intel® Xeon Phi™ Coprocessor

File System ... 93

15.3.6 Changing the Password for Users on the Intel® Xeon

Phi™ Coprocessor File System .. 94

15.3.7 Updating a Users SSH Keys on the Intel® Xeon Phi™

Coprocessor File System ... 94

15.3.8 Adding Groups to the Intel® Xeon Phi™ Coprocessor File

System ... 94

15.3.9 Removing Groups from the Intel® Xeon Phi™

Coprocessor File System ... 95

15.3.10Configuring LDAP on the Intel® Xeon Phi™ Coprocessor File System 95

15.3.11Configuring NIS on the Intel® Xeon Phi™ Coprocessor File System 95

15.3.12 Setting the Root Device ... 96

15.3.13 Adding an NFS Mount ... 97

15.3.14 Removing an NFS Mount ... 98

15.3.15 Specifying the Host Secure Shell Keys 98

15.3.16 Setting Startup Script Parameters .. 98

15.3.17 Overlaying File System with More Files 99

15.3.18 Base Files Location .. 100

15.3.19 Common Files Location .. 100

15.3.20 Coprocessor Unique Files Location 101

(Intel® MPSS)

x Document Number: 330076-001US

15.3.21Location of Additional RPMs for the Intel® Xeon Phi™ Coprocessor File System 101

15.3.22 Coprocessor Linux* Image Location 101

15.3.23 Boot On Intel MPSS Service Start 102

15.3.24 Power Management Configuration 102

15.3.25 Cgroups Configuration .. 102

15.3.26 Syslog Configuration ... 102

15.4 Other File System Helper Functions ... 103

15.4.1 Updating the Compressed CPIO Image 103

15.4.2 Updating the NFS Root Export .. 103

16 Adding Software ... 104

16.1 The File System Creation Process ... 104

16.2 Creating the Download Image File ... 104

16.3 Adding Files to the Root File System ... 104

16.3.1 Adding an Overlay ... 104

16.3.2 Example: Adding a New Global File Set 105

17 Linux* SYSFS Entries .. 106

17.1 The Global Mic.ko Driver SYSFS Entries ... 106

17.1.1 Revision Information .. 106

17.1.2 Other Global SYSFS Entries ... 106

17.2 The Intel® Xeon Phi™ Mic.ko Driver SYSFS Entries...................... 107

17.2.1 State SYSFS Entries .. 107

17.2.2 Statistics .. 108

17.2.3 Debug SYSFS Entries .. 108

17.2.4 Flash SYSFS Entries .. 109

17.2.5 Power Management SYSFS Entries 109

17.2.6 Other SYSFS Entries ... 110

Overview

User's Guide xi

18 General Services Tutorial .. 111

18.1 Service Startup by Priorities (Redhat 6.x) ... 111

18.2 Service Startup by Dependencies (SuSE 11 SP2 & SP3) 112

18.3 Xeon Phi™ Coprocessor Method for Service Start Priority 113

19 Configuration Examples ... 114

19.1 Network Configuration ... 114

19.1.1 Internal Bridge Example ... 114

19.1.2 Basic External Bridge Example ... 117

19.2 IPoIB Networking Configuration .. 118

19.2.1 Managing the IPoIB Interface ... 119

19.2.2 IP Addressing ... 119

19.2.3 Datagram vs. Connected Modes .. 120

20 Intel MPSS Cluster Setup Guide ... 121

20.1 Pre-work .. 122

20.2 RSA/DSA Key Creation .. 123

20.3 IP Assignment ... 123

20.4 Flash Update in Cluster Environment .. 123

20.5 Initialize Configuration .. 124

20.6 Set Up Static Bridge Configuration ... 124

20.6.1 Modify the Intel MPSS Configuration 125

20.6.2 Set Up Name Resolution for Static Bridge Configuration126

20.7 Set up DHCP Configuration .. 127

20.7.1 Modify the Intel MPSS Configuration 127

20.7.2 Set Permanent MAC Address for the Coprocessor 128

20.7.4 Modify the DHCP Configuration File 129

20.7.5 Modify the Name Resolution Configuration File 129

20.8 Set Up Mounted File System ... 129

20.9 Intel® Xeon Phi™ Coprocessor User Access 130

20.10 Starting Intel MPSS Service .. 130

(Intel® MPSS)

xii Document Number: 330076-001US

20.11 Starting OFED-MIC Service ... 130

20.12 Ensure Services Are Running After Reboot 130

21 Sample Cluster Configuration Scripts .. 131

21.1 ifcfg-br0 Configuration File .. 131

21.2 ifcfg-eth0 Configuration File .. 131

21.3 Hostlist Configuration File .. 131

21.4 OFED* 1.5.4.1 Custom Configuration Answer 132

21.5 Pre-Config Script for Static Bridge Configuration 136

21.6 Pre-Config Script for DHCP configuration .. 137

22 Related Documentation ... 139

22.1 MYO Documentation ... 139

22.1.1 MYO Man Page Location .. 139

22.1.2 MYO Tutorials & Other Document Location on Linux* .. 139

22.2 COI Documentation .. 139

22.2.1 COI Documentation for Linux* ... 139

22.3 SCIF documentation ... 139

22.3.1 SCIF User Guide ... 140

22.3.2 SCIF Tutorials Location .. 140

22.3.3 SCIF Man Page Locations .. 140

22.4 Intel® Xeon Phi™ Coprocessor Collateral ... 140

Overview

User's Guide xiii

List of Figures

Figure 1 Common Intel MPSS Installation/Configuration Workflows 1

Figure 2 Boot process for Intel MPSS ... 63

Figure 3 Internal bridge network ... 114

Figure 4 External bridge network ... 117

Figure 5 One-to-One IB Device (HCA, Port) Mapping between Host and Coprocessor . 119

Figure 6 Setup process flowchart ... 121

List of Tables

Table 1 Intel® Tools Supported with Intel MPSS Release 3.4 .. 2

Table 2 Conventions and Symbols used in this Document ... 3

Table 3 OFED Distribution versus Supported Features ... 3

Overview

User's Guide 1

1 Overview
This User’s Guide is for the Intel® Manycore Platform Software Stack (Intel® MPSS) build
revision 3.4. Intel MPSS 3.4 encompasses the Linux* driver and supporting tools from
gold_update_3 forward. This document contains advanced configuration information and
procedures.

NOTE: If using sudo, the full path of the command is required (or run as root):

[host]$ sudo /usr/sbin/micctrl --<option>

Add /usr/sbin and /sbin to the path to avoid entering the full path of the command:

export PATH=$PATH:/usr/sbin:/sbin

Optionally, add /usr/sbin and /sbin to the user's .bashrc file to eliminate the need to set
the path in each session.

Warning: To begin Intel MPSS installation, you must start with Section 2 of the Intel MPSS
Readme document -- DON'T START HERE. That Section also includes flash update and
SSH access instructions.

Figure 1 Common Intel MPSS Installation/Configuration Workflows

(Intel® MPSS)

2 Document Number: 330076-001US

1.1 Technology Previews
This release includes a technology preview of CCL-Direct for kernel mode clients. This
includes an experimental version of kernel mode InfiniBand verbs and RDMA_CM and an
experimental version of IPoIB. This experimental version of CCL-Direct kernel mode
support has also been tested with a Lustre client. Refer to the document
(/usr/share/doc/ofed-driver-*/lustre-phi.txt) for information on how to build and install a
Lustre client on the Intel® Xeon Phi™ coprocessor. This preview only supports the
Mellanox* mlx4 driver and associated hardware and currently only supports the OFED-
1.5.4.1 version of OFED software. Support for the new Mellanox* mlx5 driver and the
OFED-3.5-MIC release will be added in a future version of Intel MPSS.

1.2 Supported Intel® Tools
The following table lists compatible version numbers of Intel® tools that are supported
with Intel MPSS release 3.4.

Table 1 Intel® Tools Supported with Intel MPSS Release 3.4

Name of Tool Supported Version

Intel® Composer XE SP1 2013

Intel® C++ Compiler 14.0.0

Intel® Integrated Performance Primitives for Linux* 8.0.1

Intel® Math Kernel Library for Linux* 11.1.0

Intel® Threading Building Blocks for Linux* 4.2.0

Intel® VTune™ Amplifier XE 2013_update6

Intel® SEP Sep3_10 (3.x fix)

The intel-composerxe-compat-k1om RPM temporarily provides backward compatibility to
the icc compiler before version 14.0.0 via the soft links to /opt/mpss/[version
number]/sysroot. It is not a separate set of binaries for the x86_64-k1om-linux
architecture used in Intel MPSS 2.1.6720.

Overview

User's Guide 3

1.3 Conventions and Symbols
Table 2 Conventions and Symbols lists conventions used in this docuement.

Table 2 Conventions and Symbols

This type style Indicates an element of syntax, reserved word, keyword, filename, computer

output, command, or part of a program example. The text appears in lowercase

unless uppercase is significant.

This type style Used to highlight the elements of a graphical user interface such as buttons and

menu names.

This type style Indicates a placeholder for an identifier, an expression, a string, a symbol, or a

value. Substitute one of these items for the placeholder. Also used to indicate

new terms, URLs, email addresses, filenames, and file extensions.

[items] Indicates that the items enclosed in brackets are optional.

{ item | item } Indicates to select only one of the items listed between braces. A vertical bar (|)

separates the items.

... (ellipses) Indicates that you can repeat the preceding item.

\ (backslash) Indicates continuation of a command onto the next line in the document.

micN Denotes a name such as mic0, mic1, etc. where N=0,1, 2, … For example, the file

name micN.conf denotes file names mic0.conf, mic1.conf, etc.

[host] $ Denotes a command entered on the host with user privileges.

[host] # Denotes a command entered on the host with administrative (root) privileges.

[micN] $ Denotes a command entered on a coprocessor N with user privileges.

[micN] # Denotes a command entered on a coprocessor N with administrative privileges.

* Other names and brands may be claimed as the property of others.

<command>
1
 The number 1 is a hyperlink to a footnote pertaining to this command.

1

 __

1
 When running Intel® MPSS on RHEL 7.0, please replace:

service mpss unload
with
systemctl disable
modprobe -r mic
For all other service commands, replace:
service <daemon> <action>
with
systemctl <action> <daemon>

(Intel® MPSS)

2 Document Number: 330076-001US

2 Installing Intel MPSS with OFED

Support (optional)

2.1 Requirements
1) OFED-1.5.4.1 typical requirements

 gcc-c++

 bison

 flex

 tk

 tcl-devel

 zlib-devel

 libstdc++-devel

 libgfortran43

2) Red Hat* Enterprise Linux* (RHEL) specific:

 gcc

 rpmbuild

 kernel-devel

3) SUSE* Linux* Enterprise Server (SLES) specific:

 gcc

 rpmbuild

 kernel-default-devel

NOTE: libgfortran43 is not included in SLES 11.2/11.3 x86_64 base install DVDs or the SDK,

however libgfortran46 is included. See Section 2.3 Steps to Install Intel MPSS using

OFED 1.5.4.1 for instructions for modifying the OFED install script to allow the

installation to work with libgfortran46.

Several different OFED distributions are supported. Select one which matches hardware

and software requirements and install using instructions from the accompanying section.

Each OFED distribution supports a subset of the Intel MPSS supported OS distros; most

support SLES 11 SP2/3 and RHEL 6.3/4/5. RHEL 7 is only supported by 3.5-2-MIC as of

this writing. Check the release notes for the exact supported distros.

Installing Intel MPSS with OFED Support (optional)

User's Guide 3

Table 3 OFED Distribution versus Supported Features

OFED Distribution

(install section)

Mlx4

(kernel mode)

Mlx5

(kernel mode)

Intel

offload

Scif

(native mode)

ccl-proxy

Ofed+ (2.2) No (no) No (no) Yes Yes No

Ofed 1.5.4.1 (2.3) Yes (yes) No (no) Yes Yes Yes

Ofed 3.5-2 MIC (2.4)

(2.4)(()(2.4)

Yes (yes) Yes (no) Yes Yes Yes

Mellanox* Ofed 2.1/2.2

(2.6)

Yes (yes) Yes (no) Yes Yes Yes

Several different OFED distributions are supported. Select one which matches hardware
and software requirements and install using instructions from the accompanying section.

2.2 Steps to Install Intel MPSS using OFED+

OFED+ is the Intel® True Scale Fabric Host Channel Adapter Drivers and Software stack

WARNING: Installing OFED+ support will replace the OFED components in your standard distribution.
This section describes the steps to install Intel® True Scale Fabric Host Channel Adapter
Drivers and Software stack (OFED+), an enhanced implementation of OFED that supports
Intel® True Scale Fabric Host Channel Adapters (HCA), and enables communication
between an Intel® Xeon Phi™ coprocessor and an Intel® True Scale Fabric HCA. This
installation may overlay some of the RDMA/InfiniBand* components in your Red Hat* or
SUSE* distribution. As a result, the Linux* kernel will not load kernel mode software that
was built against the Red Hat* or SUSE* RDMA/InfiniBand* software in your distribution.
This may require that you rebuild such software against the installed OFED, or obtain a
version of the software that was so built. For example, an implementation of the Lustre*
file system that was built against a Red Hat* or SUSE* distribution will not be loaded by
the Linux* kernel, and must be rebuilt against the installed OFED.

NOTE: User mode applications will not need to be rebuilt due to this installation.

The following installation should be performed on any compute node in which an Intel®
True Scale Fabric HCA is installed.

After a successful installation, an 'ibv_devices' command issued on the host will show

both 'qib0' and 'scif_0', while an ibv_devices command issued on the Intel® Xeon Phi™

coprocessor will show only 'scif_0'.

NOTE: When running MPI in Symmetric mode with more than 16 processes per node,

PSM_RANKS_PER_CONTEXT=<value> needs to be specified (the value can be 2,3 or 4

the default value is 1) so that the available 16 contexts can be shared by the ranks.

(Intel® MPSS)

4 Document Number: 330076-001US

Intel® True Scale Fabric Host Channel Adapter Drivers and Software (OFED+) including

the PSM library is available as a free download on http://downloadcenter.intel.com

Download and Installation Instructions for All Supported Versions of Linux 6.X.

NOTE: If using RHEL 7, please skip to Section 2.4

1) Go to http://downloadcenter.intel.com/

2) Under "Search Downloads" on the left half of the screen, type "True Scale" and hit
"Enter".

3) Narrow the results by selecting the appropriate operating system.

4) Select the version of Intel® True Scale Fabric Host Channel Adapter Host Drivers and
Software that supports your operating system. Details of the operating system can be
found by clicking on a version and then clicking the “Release Notes (pdf)” link at the
bottom of the section.

NOTE: Intel® True Scale Fabric Host Channel Adapter Host Drivers and Software
versions 7.2.x and previous support OFED 1.5.4.1 while version 7.3 and higher support
OFED 3.5-2 or later. The specific supported OFED version is listed in the Detailed
Description section of the selected version.

5) Download the appropriate "IB-Basic" file as well as the related publications file.

6) The Software Installation Guide (IFS_FabricSW_InstallationGuide*.pdf) is contained in
the Publications_HCA_SW*.zip download. Chapter 4 Install OFED+ Host Software in
the Software Installation Guide provides detailed installation instructions.

7) After rebooting the system as recommended by the previous Install step, stop
openibd service and ensure that openibd does not start automatically after every
reboot:

[host]# 1service openibd stop

[host]# chkconfig --level=123456 openibd off

8) If using the 7.2 OFED+ version, ensure kernel-ib-devel, kernel-ib, and dapl packages
are not installed.

[host]# rpm -e kernel-ib-devel kernel-ib

[host]# rpm -e {dapl,dapl-{devel,devel-static,utils}}

If using the 7.3 OFED+ version, ensure compat-rdma-devel, compat-rdma and dapl
packages are not installed.
[host]# rpm -e compat-rdma-devel compat-rdma

[host]# rpm -e {dapl,dapl-{devel,devel-static,utils}}

9) If using yum to install Intel MPSS, it is also necessary to remove infinipath-libs and
infinipath-devel prior to installing Intel MPSS:

[host]# rpm -e --nodeps --allmatches infinipath-libs \

infinipath-devel

Install Intel MPSS OFED.

[host]$ cd mpss-3.4

[host]$ cp ofed/modules/*`uname –r`*.rpm ofed

http://downloadcenter.intel.com/
http://downloadcenter.intel.com/
https://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=23578&lang=eng&OSVersion=Red%20Hat%20Enterprise%20Linux%206*&DownloadType=Drivers
https://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=23578&lang=eng&OSVersion=Red%20Hat%20Enterprise%20Linux%206*&DownloadType=Drivers

Installing Intel MPSS with OFED Support (optional)

User's Guide 5

 Red Hat* Enterprise Linux*

 [host]# yum install ofed/*.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install ofed/*.rpm

10) Install required PSM (Performance Scaled Messaging) libraries and drivers as follows:

 Red Hat* Enterprise Linux*

[host]# yum install psm/*.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install psm/*.rpm

11) To run MPI applications using Intel MPI over tmi fabric, the tmi.conf file should be
copied to the Intel® Xeon Phi™ coprocessor using following procedure:

a) Create a directory "etc" in "/var/mpss/common/" directory.

b) Copy the tmi.conf file from <impi_install_dir>/etc64/ directory to
/var/mpss/common/etc directory.

2.3 Steps to Install Intel MPSS using OFED 1.5.4.1
WARNING: This installation may overlay some of the RDMA/InfiniBand components in your

distribution. As a result, the Linux* kernel may not load the kernel mode software that
was built against the Red Hat* or SUSE* RDMA/InfiniBand software in your distribution.
This may require that you rebuild such software against the installed OFED, or obtain a
version of the software that was so built. For example, an implementation of the Lustre*
file system that was built against a Red Hat* or SUSE* distribution may not be loaded by
the Linux* kernel, and may need to be rebuilt against the installed OFED. Note that user
mode applications will not need to be rebuilt due to this installation.

Background:
This section describes the steps to install an enhanced implementation of OFED 1.5.4.1
that supports CCL (Coprocessor Communication Link) and CCL-Proxy. CCL enables native
Intel® Xeon Phi™ coprocessor applications to communicate directly with certain
Mellanox* InfiniBand adapters.

Option 1:
The Offload computing model is characterized by MPI communication (if used at all)
taking place only between the host processors in a cluster. In this model, Intel® Xeon Phi™
coprocessors are accessed exclusively through the offload capabilities of products like the
Intel® C, C++, and Fortran Compilers, and the Intel® Math Kernel Library (Intel MKL). This
mode of operation does not require CCL, and therefore the OFED version in a Red Hat* or
SUSE* distribution can be used.

Option 2:
If MPI ranks are to be executed on Intel® Xeon Phi™ coprocessors, and if it is required that
these ranks communicate directly with an InfiniBand adapter, then the following

(Intel® MPSS)

6 Document Number: 330076-001US

installation should be performed. The ibscif virtual adapter will provide the best host-to-
coprocessor and coprocessor-to-coprocessor transfer performance on systems without an
InfiniBand adapter.

Steps:

1) Download OFED 1.5.4.1.

[host]$ wget \

https://www.openfabrics.org/downloads/OFED/ofed-1.5.4/OFED-1.5.4.1.tgz

2) Untar OFED 1.5.4.1 and access the untar folder.

[host]$ tar xf OFED-1.5.4.1.tgz

[host]$ cd OFED-1.5.4.1

NOTE: Step 3 applies only when using SLES 11 SP2 or SP3. If your host operating system is

not SLES 11 SP2 or SP3, skip ahead to Step 4.

3) In SLES 11 SP2 or SP3, when choosing to install the MPI/gcc packages from the OFED
package, it is necessary to make the following changes to the OFED ‘install.pl’ script:

a) Find the line containing "$libstdc = 'libstdc++46';" and add the following line
immediately below it:

$libgfortran = 'libgfortran46';

b) Find the line containing "} elsif ($dist_rpm =~ /sles-release-11.2/) {" and add the
following three lines immediately above it:

} elsif ($dist_rpm =~ /sles-release-11.3/) {

 $DISTRO = "SLES11.3";

 $rpm_distro = "sles11sp3";

The diff example shown on the next page illustrates the changes to be applied to the
OFED ‘install.pl’ script.

NOTE: In this PDF document, consecutive spaces from the diff are not present in the text. The

example is shown for reference only, and will not produce a working patch when copied

and pasted from this document. To create a working patch, manually type the file,

including space characters where appropriate.

diff -Naur install.pl-old install.pl

--- install.pl-old 2012-02-07 15:22:26.000000000 +0000

+++ install.pl 2013-10-30 15:33:00. 738745000 +0000

@@ -217,6 +217,9 @@

 } elsif ($dist_rpm =~ /openSUSE/) {

 $DISTRO = "openSUSE";

 $rpm_distro = "opensuse11sp0";

+} elsif ($dist_rpm =~ /sles-release-11.3/) {

+ $DISTRO = "SLES11.3";

+ $rpm_distro = "sles11sp3";

Installing Intel MPSS with OFED Support (optional)

User's Guide 7

 } elsif ($dist_rpm =~ /sles-release-11.2/) {

 $DISTRO = "SLES11.2";

 $rpm_distro = "sles11sp2";

@@ -374,6 +377,7 @@

 $curl_devel = 'libcurl-devel';

 if ($rpm_distro eq "sles11sp2") {

 $libstdc = 'libstdc++46';

+ $libgfortran = 'libgfortran46';

 }

 } elsif ($DISTRO =~ m/RHEL|OEL|FC/) {

 $libstdc = 'libstdc++';

4) Install the OFED stack as instructed in OFED README.txt, with a few exceptions
regarding installed packages.

[host]$ less README.txt

[host]# perl install.pl

During installation, select:

 Option 2 (Install OFED Software)

 Option 4 (Customize)

 ...exclude kernel-ib* and dapl* packages...

 "Install 32-bit packages? [y/N]", answer N

 “Enable ROMIO support [Y/n]”, answer Y

 “Enable shared library support [Y/n]”, answer Y

 “Enable Checkpoint-Restart support [Y/n]”, answer N

NOTE: It is recommended not to install the 32-bit packages when installing OFED on RHEL 6.5.

Installing 32-bit support on RHEL 6.5 requires an older version of glibc-devel.i686.

5) Install Intel MPSS OFED.

[host]$ cd mpss-3.4

[host]$ cp ofed/modules/*`uname –r`*.rpm ofed

[host]# rpm –Uvh ofed/*.rpm

2.4 Steps to Install Intel MPSS using OFED-3.5-2-

mic

NOTE: As of release time, this OFED is currently in beta. See the Intel MPSS Release Notes for

changes and distro support.

1) Install the Intel MPSS stack as instructed in the Intel MPSS Readme.

2) Download the latest distribution tarball from:

(Intel® MPSS)

8 Document Number: 330076-001US

https://www.openfabrics.org/downloads/ofed-mic/ofed-3.5-2-mic/

3) Untar OFED-3.5* and access the untar folder.

[host]$ tar xf OFED-3.5*.tgz

[host]$ cd OFED-3.5*

4) Install the OFED stack as instructed in OFED README.txt.

[host]$ less README.txt

[host]# perl install.pl

2.5 Steps to Install Intel MPSS using Mellanox*

OFED 2.1/2.2
1) Download Mellanox* OFED 2.1.x/2.2.x from:

http://www.Mellanox.com/page/products_dyn?product_family=26

2) Untar, read the documentation, install as normal.

Install Intel MPSS OFED ibpd rpm:

[host]# rpm –U ofed/ofed-ibpd*.rpm

3) From the src/ folder of the Intel MPSS installation, compile dapl, libibscif, and ofed-driver
source RPMs:

[host]# rpmbuild –-rebuild -–define “MOFED 1” \

src/dapl*.src.rpm src/libibscif*.src.rpm src/ofed- \

driver*.src.rpm

4) Install the resultant RPMs:

on RHEL systems:

[host]# rpm –U ~/rpmbuild/RPMS/x86_64/*rpm

on SLES systems:

[host]# rpm –U /usr/src/packages/RPMS/x86_64/*rpm

2.6

2.7 Starting Intel MPSS with OFED Support
1) After installing Intel MPSS, ensure the Intel MPSS service is started by using the Linux*

service command:

[host]# 1service mpss status

http://www.mellanox.com/page/products_dyn?product_family=26

Installing Intel MPSS with OFED Support (optional)

User's Guide 9

Do not proceed any further if Intel MPSS is not started.

2) If using Intel® True Scale Fabric HCAs, or using Mellanox** InfiniBand adapters and/or
the ibscif virtual adapter, start the IB and HCA services by doing the following:

[host]# 1service openibd start

NOTE: If needed, start the opensmd service to configure the fabric:

[host]# 1service opensmd start

NOTE: If using Intel® True Scale Fabric HCAs and Intel® True Scale Fabric switches, it is

recommended to use the Intel® Fabric Manager, rather than the opensm. Visit

http://www.intel.com/infiniband for information on Intel’s fabric management and
software tools, downloads and support contacts.

3) If using CCL-Direct and IPoIB with Mellanox** InfiniBand adapter you can enable IPoIB
module to be loaded as part of the ofed-mic service (see Section 19.2) and configure
the IP Address and Netmask by editing the /etc/mpss/ipoib.conf which contains
instructions for how to make these changes. See example ipoib.conf script in Section
19.2. Note that IPoIB is only a technology preview and currently only works with
OFED-1.5.4.1 on the Mellanox* mlx4 driver and hardware.

4) If using Intel® True Scale Fabric HCAs, or using Mellanox** InfiniBand adapters and/or
the ibscif virtual adapter, then start the Intel® Xeon Phi™ coprocessor specific OFED
service on the host using:

[host]# 1service ofed-mic start

5) The use of ccl-proxy service is applicable only if using Mellanox** InfiniBand adapters.
To start the ccl-proxy service (see configuration in: /etc/mpxyd.conf):

[host]# 1service mpxyd start

2.8 Stopping Intel MPSS with OFED Support
To stop all OFED support on all variants, stop the following services in order:

[host]# 1service mpxyd stop

[host]# 1service opensmd stop

[host]# 1service ofed-mic stop

[host]# 1service openibd stop

http://www.intel.com/infiniband
http://www.intel.com/content/www/us/en/infiniband/truescale-infiniband-software-and-tools.html
http://www.intel.com/content/www/us/en/infiniband/truescale-infiniband-software-and-tools.html

(Intel® MPSS)

10 Document Number: 330076-001US

3 Installing Intel MPSS with GANGLIA*

Support (optional)

3.1 Requirements
1) Red Hat* Enterprise

 apr

 apr-devel

 expat

 expat-devel

 gcc-c++

 libconfuse

 libconfuse-devel

 libtool

 rpmbuild

 rrdtool

 rrdtool-devel

2) SUSE* Linux* Enterprise Server (SLES)

 gcc-c++

 libapr1

 libapr1-devel

 libconfuse0

 libconfuse-devel

 libexpat0

 libexpat-devel

 libtool

 rpmbuild

 rrdtool

 rrdtool-devel

Installing Intel MPSS with GANGLIA* Support (optional)

User's Guide 11

3.2 Steps to Install Intel MPSS with GANGLIA*

Support

The default path for the GANGLIA* web page is /usr/share/ganglia. If the ganglia-web
RPM was installed, the files conf.php, get_context.php and host_view.php will be
overwritten. Only GANGLIA* 3.1.7 is currently supported.

For additional information on the installation of GANGLIA*, consult the documentation at
http://ganglia.sourceforge.net

NOTE: Before executing steps 1 - 12, create the directories /var/lib/ganglia/rrds and

/var/www/html if they do not already exist:

[host]# mkdir -p /var/lib/ganglia/rrds

[host]# mkdir -p /var/www/html

Steps:

1) Download GANGLIA* 3.1.7 from http://ganglia.info/?p=269.

2) Untar GANGLIA* 3.1.7 package and access the untar folder.
[host]$ tar xf ganglia-3.1.7.tar.gz

[host]$ cd ganglia-3.1.7

3) Execute the configure tool.
[host]$./configure --with-gmetad \

--with-libpcre=no --sysconfdir=/etc/ganglia

4) Build GANGLIA* content and install binaries.
[host]# make

[host]# make install

5) Generate default configuration for gmond.
[host]# gmond --default_config >/etc/ganglia/gmond.conf

6) Edit (as root or superuser) /etc/ganglia/gmond.conf to configure a udp_recv_channel,
add the following entry on line 54:
udp_recv_channel { port = 8649 }

7) Edit (as root or superuser) /etc/ganglia/gmetad.conf to configure the cluster name in
the "data_source" line.
data_source "mic_cluster" localhost

8) Change the owner of the RRD folder.
[host]# chown -R nobody /var/lib/ganglia/rrds

9) Copy GANGLIA* web content to local web path.
[host]$ cp -r web <web_path>/ganglia

10) Start gmond and gmetad daemons.
[host]# gmond

[host]# gmetad

http://ganglia.sourceforge.net/
http://ganglia.info/?p=269

(Intel® MPSS)

12 Document Number: 330076-001US

11) Install web front end for Intel MPSS GANGLIA*.

 Red Hat* Enterprise Linux*

 [host]# yum install mpss-ganglia*.rpm

 SUSE* Linux* Enterprise Server

 [host]# zypper install mpss-ganglia*.rpm

12) Copy the web content under /usr/share/mpss/ganglia to the GANGLIA* web path.

 [host]# cp -r /usr/share/mpss/ganglia/* <web_path>/ganglia/

3.2.1 Installing Intel MPSS GANGLIA* RPMs in the Card
To install GANGLIA* RPM files in the card, do the following:

1) Refer to Section 11.3.2 “Copy RPMs to Card Using a Repo and Zypper (via HTTP)" for
example of card side installation procedure.

2) Proceed to Section 3.3 to start the coprocessor specific GANGLIA* stack.

NOTE: If there are multiple cards, repeat step 2 for the remaining card(s).

3.3 Starting Intel MPSS with GANGLIA* Support
1) Configure file /etc/ganglia/gmond.conf for the host and the cards as needed.

The CPU metrics are disabled by default; enabling them will cause a performance
penalty. To enable CPU metrics, uncomment the block in line 146.

2) The Intel® Xeon Phi™ coprocessor specific GANGLIA* stack is started by executing:

[host]# ssh micN gmond

3.4 Stopping Intel MPSS with GANGLIA* Support
Stop the Gmond for all installed coprocessors in the system. Change N to the
corresponding number for each coprocessor.

[host]# ssh micN killall gmond

Installing Intel® Xeon Phi™ Coprocessor Performance Workloads (optional)

User's Guide 13

4 Installing Intel® Xeon Phi™ Coprocessor

Performance Workloads (optional)

4.1 Requirements
1) Intel® Composer XE Requirements

There are two options to installing the Intel® Composer XE requirements. The first
option is to install the full Intel® Composer XE package and source the compilervars.sh
or compilervars.csh script at run time.

If the full composer installation is not available, then two packages can be used
instead. The required shared object libraries can be installed via the Intel® Composer
XE redistributable package, freely distributed on the web at:

http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-
fortran-composer-xe-2013-sp1-for-linux

This package has an install.sh script for installation. After installation, there are
compilervars.sh and compilervars.csh scripts which serve a similar purpose to those
scripts in the full Intel® Composer XE distribution and must be sourced at run time.

Besides the shared object libraries, the Intel MKL Linpack benchmark is also a
requirement. This is also freely distributed on the web at:

http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

This download is a tarball that can be unpacked anywhere, but the environment
variable MKLROOT must point to the top level directory of the untarred package. For
instance, if the user extracted the tarball into their home directory they should set
MKLROOT as follows (in bash or Bourne shell):

export MKLROOT=<directory_path>/linpack_<version_num>

If MKLROOT is set in the user's shell environment at run time then micprun will be
able to locate the linpack binaries. Note that the version of linpack linked above may
be newer than 11.1.2, and MKLROOT variable should reflect this.

2) MATPLOTLIB Requirements

The micpplot and micprun applications use the MATPLOTLIB Python module to plot
performance statistics. The micprun application only creates plots when verbosity is
set to two or higher, and only requires MATPLOTLIB for this use case. MATPLOTLIB
must be installed in order to create plots. Download it from:

matplotlib.sourceforge.net

http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-fortran-composer-xe-2013-sp1-for-linux
http://software.intel.com/en-us/articles/redistributable-libraries-for-the-intel-c-and-fortran-composer-xe-2013-sp1-for-linux
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://matplotlib.sourceforge.net/

(Intel® MPSS)

14 Document Number: 330076-001US

4.2 Distributed Files
This package is distributed as two RPM files:

micperf-3.*.rpm
micperf-data-3.*.rpm

The first of these packages contains everything except the reference performance
measurements, which are distributed in the second package.

4.3 RPM Installation
To install the RPM files, simply access the perf directory, located in the path where the
Intel MPSS package was extracted.

 Red Hat* Enterprise Linux*

[host]# yum install *.rpm

 SUSE* Linux* Enterprise Server

[host]# zypper install *.rpm

This installs files to the following directories:

 Source code: /usr/src/micperf

 Documentation and licenses: /usr/share/doc/micperf-[version number]

 Benchmark binaries: /usr/libexec/micperf

 Reference data: /usr/share/micperf/micp

 Links to executables: /usr/bin

4.4 Python Installation
Once the RPM packages have been installed, an additional step may be executed to
access the micp Python package: either install it to your global Python site packages, or
set up your environment to use the micp package from the installed location.

To install into the Python site packages:

[host]$ cd /usr/src/micperf/micp

[host]# python setup.py install

This method provides access to the micp package for all non-root users who use the same
Python version as the root user (sudoer). If Python is in the default location and uses a
standard configuration, setup.py installs the micp package to the directories:

/usr/bin
/usr/lib/pythonPYVERSION/site-packages/micp

An intermediate product of running "setup.py install" is the creation of the directory:

Installing Intel® Xeon Phi™ Coprocessor Performance Workloads (optional)

User's Guide 15

/usr/src/micperf/micp-<version>/build

None of the products of running setup.py discussed above will be removed by uninstalling
the micperf RPMs. The installation with setup.py uses Python's distutils module, and this
module does not support uninstall. If installing on a Linux system where Python is
configured in a standard way, it should be possible to uninstall with the following
commands:

[host]# sitepackages=`sudo python -c \

"from distutils.sysconfig import get_python_lib; \

print(get_python_lib())"`

[host]# rm -rf /usr/src/micperf/micp/build \

/usr/bin/micpcsv \

/usr/bin/micpinfo \

/usr/bin/micpplot \

/usr/bin/micpprint \

/usr/bin/micprun \

${sitepackages}/micp \

${sitepackages}/micp-[version number]*

4.5 Alternative to Python Installation
Another way to access the micp package after installing the RPMs is to alter the shell run
time environment of a user. To set up your bash or Bourne shell environment:

[host]$ export PYTHONPATH=/usr/src/micperf/micp:${PYTHONPATH}

To set up your csh run time environment:

[host]$ setenv PYTHONPATH /usr/src/micperf/micp:${PYTHONPATH}

(Intel® MPSS)

16 Document Number: 330076-001US

5 Installing Intel MPSS with Reliability

Monitor Support (optional)

5.1 Overview
Reliability Monitor is designed to monitor overall health of compute nodes on cluster
level. It is running on head node, or management node. Reliability Monitor works closely
with RAS agent running on each service node. Any uncorrectable error or crash symptoms
will be reported to Reliability Monitor.

5.2 Requirements
1) Install Reliability Monitor RPM on head node, or management node.

2) Install and start Intel MPSS (see the Intel MPSS Readme, Section 2).

3) Micrasd installed on each compute node and micras service started.

5.3 Steps to Install Intel MPSS with Reliability

Monitor Support
Only install Reliability Monitor on head node, or management node.

The default path for Reliability Monitor node configuration file is /etc/mpss.

Steps:

Install Intel MPSS Reliability Monitor:

 Red Hat* Enterprise Linux*

[host]$ cd mpss-[version number]/relmon

[host]# yum install mpss-sysmgmt-relmon-3.*.rpm

 SUSE* Linux* Enterprise Server

[host]$ cd mpss-[version number]/relmon

[host]# zypper install mpss-sysmgmt-relmon-3.*.rpm

Installing Intel MPSS with Reliability Monitor Support (optional)

User's Guide 17

5.4 Starting Intel MPSS with Reliability Monitor

Support
1) On each compute node, make sure Intel mpss service and micras service are up and

running. If Intel mpss service and micras service are not running, use:

[host]# 1service mpss start

[host]# 1service micras start

2) On head node, start Reliability Monitor service by using:

[host]# 1service relmon start

5.5 Stopping Intel MPSS with Reliability Monitor

Support
On head node, stop Reliability Monitor service by using:

[host]# 1service relmon stop

5.6 Reliability Monitor Configuration File and Log
The node configuration file "mic_node.cfg" for Reliability Monitor is located under
/etc/mpss. The file is in comma-separated values (CSV) format so it is supported by
almost all spreadsheets and database management systems.

The errors will be logged into Linux* syslog /var/log/messages. You can check the error
log by using:

[host]# cat /var/log/messages | grep relmon

Reliability Monitor is installed in /usr/bin. After relmon service is running, you can issue
commands to monitor node status and error information by using:

[host]$ relmond --cmd shownode

[host]$ relmond --cmd showerr

For more information about Reliability Monitor, refer to:

[host]$ relmond –-help

(Intel® MPSS)

18 Document Number: 330076-001US

6 Post Installation Quick Configuration

After the installation of the RPMs (consult the Intel MPSS Readme for installation
instructions), the system administrator must complete the Intel® Xeon Phi™ coprocessor
configuration before starting the Intel MPSS service.

6.1 Step 1: Ensure Root Access
User access to the Intel® Xeon Phi™ coprocessor node is provided through the secure
shell utilities. Ensure the root user has ssh keys by looking in the /root/.ssh directory for
either the id_rsa.pub or id_dsa.pub key files. If no SSH keys exist, use the ssh-keygen
command to generate a set:

[host]# ssh-keygen

6.2 Step 2: Generate the Default Configuration
Each Intel® Xeon Phi™ coprocessor has a unique configuration file in the /etc/mpss
directory. Initialize the default configuration for the Intel® Xeon Phi™ coprocessors
installed on the system:

[host]# micctrl --initdefaults

The micctrl --initdefaults command creates and populates default

configuration values into Intel MPSS specific configuration

files. These configuration files, default.conf and micN.conf,

are located at /etc/mpss/, where N is an integer number (0, 1, 2,

3, etc.) that identifies each coprocessor installed in the

system. The default.conf file is common to all installed Intel®

Xeon Phi™ coprocessors.

6.3 Step 3: Change Configuration
Examine the default.conf and micN.conf files in the /etc/mpss directory. If the default
configuration meets the requirements of the system, continue to Step 4. Otherwise,
change the values using the micctrl utility (refer to Section 14 “Configuration”).

6.4 Step 4: Start the Intel MPSS Service
The default configuration specifies that each Intel® Xeon Phi™ coprocessor is booted
when the Intel MPSS service is started. To start the Intel MPSS service, execute the Linux*
service command:

Post Installation Quick Configuration

User's Guide 19

[host]# 1service mpss start

The call to service will exit when it determines the Intel® Xeon

Phi™ coprocessors have either booted successfully or failed to

boot, and the status of the cards will be displayed.

(Intel® MPSS)

20 Document Number: 330076-001US

7 Intel MPSS Configuration

7.1 Intel MPSS Configuration Overview
Intel® Xeon Phi™ coprocessor configuration files are located at /etc/mpss/default.conf
and /etc/mpss/micN.conf, where N is an integer number (0, 1, 2, 3, etc.) that identifies
each coprocessor installed in the system. The Intel MPSS device driver installs
default.conf. This file serves as the centralized configuration file for all installed
coprocessors. Additionally, the driver installs the file micN.conf, which allows the system
administrator to configure each Intel® Xeon Phi™ coprocessor individually.

Sections 12 through 18 explain in detail how to modify Intel MPSS configuration files.
Refer to those sections to complete the configuration steps.

7.2 Clock Source for the Intel® Xeon Phi™

Coprocessor
By default, the clocksource has been set to TSC. The power management software for the
coprocessor will keep the TSC clocksource calibrated even when deep sleep states are
enabled. Calibration was implemented to avoid clock drift and keep users from needing to
use the micetc clocksource. Using micetc will result in 100x slower return from
gettimeofday compared to using TSC.

7.3 Peer to Peer (P2P) Support
SCIF supports the direct transfer of data from one Intel® Xeon Phi™ coprocessor directly
into the physical memory of another Intel® Xeon Phi™ coprocessor on the same host. This
capability is referred to as Peer to Peer or P2P.

P2P is enabled by default for Intel MPSS.

 To run with P2P disabled, the module parameter control file

/etc/modprobe.d/mic.conf must be edited.

Change "p2p=1" to "p2p=0" in the options line for the "mic" module.

 A driver reload is required. Follow this procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Intel MPSS Configuration

User's Guide 21

7.4 NFS Mounting a Host Export

For NFS to work, the host firewall or iptables may need to be configured to allow the

following ports:

tcp/udp port 111 - RPC 4.0 portmapper

tcp/udp port 2049 - nfs server

The user can mount an NFS file system exported from the host. As superuser, first add the
exports to the /etc/exports file.

For example: To provide access from the "/micNfs" directory to the first Intel® Xeon Phi™
Coprocessor (micN) in the system, using a default configuration, where micN host
assignment ip: 172.31.1.254 and coprocessor assignment ip: 172.31.1.1, execute the
following sequence:

1) On the NFS host:

a) Create the “/micNfs” directory on the host system.

[host]# mkdir /micNfs

b) Append /etc/exports with the line:

/micNfs 172.31.1.1(rw,no_root_squash)

c) Add in /etc/hosts.allow file:

 ALL:172.31.1.1

d) Let NFS know the files have changed by running:

[host]# exportfs –a

e) Add the following to /etc/exports file:

/srv/michome 172.31.0.0/16(rw)

2) On the Intel® Xeon Phi™ Coprocessor host system:

Using the micctrl utility, modify the Intel® Xeon Phi™ Coprocessor’s /etc/fstab file to
find the exported NFS file system.

[host]# micctrl --addnfs=172.31.1.254:/micNfs \

--dir=/micNfs

3) Back on the NFS host, by default, the user is only created on the coprocessor. Set up
the user to allow Intel® Xeon Phi™ coprocessor to write back to the host via NFS with
the following steps.

a) Stop Intel MPSS service.

[host]# 1service mpss stop

b) Set up micuser. (Optional if micuser already exsists)

[host]# useradd -U -m -u 400 micuser

[host]# groupmod -g 400 micuser

(Intel® MPSS)

22 Document Number: 330076-001US

c) Create /srv/michome required home directories in /srv/michome (specifically
/srv/michome/micuser).

[host]# mkdir -p /srv/michome/micuser

d) Set owner of michome directories as appropriate.

[host]# chown micuser /srv/michome/micuser/

e) Confirm the following was added to the /etc/exports file:

/srv/michome 172.31.0.0/16(rw)

f) Restart NFS service.

[host]# exportfs -a

[host]# 1service nfs restart

g) Configure the coprocessor.

[host]# micctrl --addnfs=/srv/michome --dir=/home

h) Start the Intel MPSS service.

[host]# 1service mpss start

Considerations:

 If you perform a 'service mpss restart', you might need to execute the following
command as root on the coprocessor to get the NFS links operational again:

[micN]# mount -a

 For SUSE*, to auto-start the NFS server on reboots, change the Intel MPSS script
(/etc/init.d/mpss) line as follows below:

From:

Required-Start:

To:

Required-Start: nfsserver

 For RHEL*, to auto-start the NFS server on reboots, ensure the NFS server priority is
higher than that of Intel MPSS.

7.5 How to Login to the Intel® Xeon Phi™

Coprocessor by LDAP Account
Prerequisite

Configure the network as an external bridge so the LDAP server can be reached from the
coprocessor. See Section 19.1 for an example of how to configure an external bridge.

There are two ways to activate LDAP on an Intel® Xeon Phi™ coprocessor:

Intel MPSS Configuration

User's Guide 23

 Method 1 - Enable LDAP with micctrl:

1. If not already done, extract and specify the k1om rpm directory:

[host]# micctrl --rpmdir=/path/to/k1om

2. Specify the LDAP server:

[host]# micctrl --ldap=<LDAP server IP address> \

--base=”example.com”

Example: [host]# micctrl --ldap=192.168.122.129 --base=”example.com”.

Method 2 - Manually configure LDAP (using the procedure below).

NOTE: The steps described in this section are volatile: all of the steps must be repeated every

time the card is rebooted.

NOTE: This configuration does not allow changing the user’s password from the coprocessor.

Procedure

1) Install libldap, nss-ldap, pam-ldap RPM files on the coprocessor.
[micN]# rpm -ivh libldap-2.4-2-2.4.23-r1.k1om.rpm

[micN]# rpm -ivh nss-ldap-265-r0.k1om.rpm

[micN]# rpm -ivh pam-ldap-186-r0.k1om.rpm

2) Configure nss-ldap on the Coprocessor.
[micN]# cp /etc/nsswitch.ldap /etc/nsswitch.conf

[micN]# sed -ie"/^hosts:/s/dns ldap/files/" /etc/nsswitch.conf

[micN]# SelfIp=`/sbin/ifconfig micN | grep \

"inet addr" | cut -d":" -f2 | cut -d" " -f1`

[micN]# echo ${SelfIp} `hostname` `hostname -s` >>/etc/hosts

3) Configure ldap on the Coprocessor.
[micN]# cp /etc/openldap/ldap.conf /etc

[micN]# echo \

"URI ldap://<LDAP server IP address>/" >>/etc/ldap.conf

Example: echo "URI ldap://192.168.122.129/" >>/etc/ldap.conf

[micN]# echo "BASE dc=example,dc=com" >>/etc/ldap.conf \

“auth sufficient pam_ldap.so”

4) Configure PAM for SSH and others on the Coprocessor.

[micN]# sed -ie"s/^$/auth sufficient pam_ldap.so/" \

/etc/pam.d/common-auth

[micN]# sed -ie"/session/s/required/optional/"\

/etc/pam.d/sshd

(Intel® MPSS)

24 Document Number: 330076-001US

7.6 How to Login to the Intel® Xeon Phi™

Coprocessor by NIS/YP Account
There are two ways to activate NIS on an Intel® Xeon Phi™ coprocessor:

 Follow the procedure below

 Use micctrl, such as micctrl --nis=<NIS/YP server IP address> --domain=”example.com”

Example:
[MicN]# micctrl --rpmdir=<path to K1OM directory>

[MicN]# micctrl --nis=192.168.122.129 --domain=”example.com”

In both cases, the prerequisite below is required. For more information about micctrl,
refer to its help page:

[host]# micctrl --help

Prerequisite

Configure the network as an external bridge so the NIS/YP server can be reached from the
coprocessor. See Section 19.1.2 for an example of how to configure an external bridge.

The above configuration does not allow changing the user’s password from the

coprocessor.

NOTE: The steps described in this section are volatile: all of the steps must be repeated every

time the card is rebooted.

Procedure

1) Install libtirpc1,rpcbind, ypbind-mt, yp-tools, and glibc-extra-nss RPM files on the
coprocessor.

[micN]# rpm -ivh libtirpc1-0.*.k1om.rpm

[micN]# rpm -ivh rpcbind-0.*.k1om.rpm

[micN]# rpm -ivh yp-tools-*.k1om.rpm

[micN]# rpm -ivh ypbind-mt-*.k1om.rpm

[micN]# rpm -ivh glibc-extra-nss-2.*.k1om.rpm

2) Start rpcbind daemon.

[micN]# /etc/init.d/rpcbind start

3) Start ypbind daemon.

[micN]# echo \

Intel MPSS Configuration

User's Guide 25

"domain <domain name> server <server IP address>" >>/etc/yp.conf

[micN]# domainname <domain name>

[micN]# /etc/init.d/ypbind start

Example:
[micN]# echo "domain caz.ra.intel.com server 192.168.122.136" \

>>/etc/yp.conf

[micN]# domainname caz.ra.intel.com

[micN]# /etc/init.d/ypbind start

4) Configure nss-ldap on the Coprocessor.

[micN]$ cat <<EOF >>/etc/nsswitch.conf

passwd: nis files

shadow: nis files

group: nis files

EOF

5) Configure sshd on the Coprocessor.

[micN]# echo "UsePAM yes" >>/etc/ssh/sshd_config

6) Configure PAM for SSH and others on the Coprocessor.

[micN]# sed -ie"s/^$/auth sufficient pam_ldap.so/" \

/etc/pam.d/common-auth

[micN]# sed -ie"/session/s/required/optional/" \

/etc/pam.d/sshd

7) Restart sshd (the above changes will take effect).

[micN]# /etc/init.d/sshd restart

7.7 How to Enable NFS Auto Mount with NIS/YP on

the Intel® Xeon Phi™ Coprocessor
Prerequisite

Configure the network as an external bridge so the NIS/YP server can be reached from the
coprocessor. See Section 19.1.2 for an example of how to configure an external bridge.

The above configuration does not allow changing user’s password from the coprocessor.

NOTE: The steps described in Section 7.7 are volatile: all of the steps must be repeated every

time the card is rebooted.

Procedure

(Intel® MPSS)

26 Document Number: 330076-001US

1) Install libtirpc1,rpcbind, ypbind-mt, yp-tools, and glibc-extra-nss RPM files from the
K1OM tar package to the coprocessor:

[micN]# rpm -ivh libtirpc1-0.*.k1om.rpm rpcbind-0.*.k1om.rpm yp-

tools-*.k1om.rpm ypbind-mt-*.k1om.rpm glibc-extra-nss-

2.*.k1om.rpm nfs-utils-client-*.k1om.rpm autofs-5.*.k1om.rpm

2) Start rpcbind daemon.

[micN]# /etc/init.d/rpcbind start

3) Start ypbind daemon.

[micN]# echo "domain <domain name> \

server <server IP address>" >>/etc/yp.conf

[micN]# domainname <domain name>

[micN]# /etc/init.d/ypbind start

4) Configure nss-ldap on the Coprocessor.

[micN]$ cat <<EOF >>/etc/nsswitch.conf

passwd: nis files

shadow: nis files

group: nis files

EOF

5) Configure sshd on the Coprocessor.

[micN]# echo "UsePAM yes" >>/etc/ssh/sshd_config

6) Configure PAM for SSH and others on the Coprocessor.

[micN]# sed -ie"s/^$/auth sufficient pam_ldap.so/" \

/etc/pam.d/common-auth

[micN]# sed -ie"/session/s/required/optional/" \ /etc/pam.d/sshd

7) Configure autofs and re-start autofs/automount daemon with the configuration.

[micN]# echo "/home /etc/auto.misc " >>/etc/auto.master

[micN]# /etc/init.d/autofs stop

[micN]# sleep 2 # need.

[micN]# /etc/init.d/autofs start

8) Restart sshd (the above changes will take effect).

[micN]# /etc/init.d/sshd restart

Intel MPSS Configuration

User's Guide 27

7.8 How to Enable Host Based Authentication on

SSH
On Intel® Xeon Phi™ coprocessor – ssh server c

1) Configure sshd to enable host based authentication.

[micN]# cat <<EOF >>/etc/ssh/sshd_config

HostbasedAuthentication yes

IgnoreRhosts no

EOF

2) Register SSH client to a user.

[host]$ cat <<EOF >><home directory>/.shosts

<micN>

<server IP address>

EOF

[host]# chmod 600 <home directory>/.shosts

[host]# chown <owner:group> <home directory>/.shosts

Example:

 cat <<EOF >>~caz/.shosts

HostBasedAuthClient

192.168.122.50

EOF

 chmod 600 ~caz/.shosts

 chown caz:caz ~caz/.shosts

3) Create an entry for SSH client in user’s known_hosts.

[host]$ ssh <user>@<micN>

Example:

[host}# su caz

 ssh HostBasedAuthClient

Are you sure you want to continue connecting (yes/no)? yes

<user>@<server IP address>’s password:

Exit

NOTE: The prompt Are you sure you want to continue connecting (yes/no)? will only

be seen the first time you connect to the system.

4) On Intel® Xeon Phi™ coprocessor – ssh server restart SSH daemon.

(Intel® MPSS)

28 Document Number: 330076-001US

[micN]# /etc/init.d/sshd restart

5) Remove SSH key to make sure user based authentication is not used.

[host]$ cd <home directory>/.ssh

[host]$ rm -f authorized_keys id_rsa*

7.9 How to Mount a Share using NFS v4
On Intel® Xeon Phi™ coprocessor – NFS client

1) Install required RPM files

[micN]# rpm -ivh util-linux-mount-2.*.k1om.rpm \

 util-linux-umount-2.*.k1om.rpm

[micN]# nfs-utils-client-*.k1om.rpm

[micN]# nfs-utils-1*.k1om.rpm \

 libnfsidmap0-0.*.k1om.rpm libevent-2.*.k1om.rpm

NOTE: When installing nfs-utils, the prompt, “starting idmapd: no /etc/idmapd.conf” should be

expected, because you have not yet created /etc/idmapd.conf.

2) Create or modify nss configuration file.

[micN]$ cat <<EOF >>/etc/nsswitch.conf

passwd: files

shadow: files

group: files

EOF

3) Create an idmapd configuration file.

[micN]$ cat <<EOF >>/etc/idmapd.conf

[General]

Domain = localdomain

[Mapping]

Nobody-User = nobody

Nobody-Group = nogroup

[Translation]

Method = nsswitch, static

EOF

4) Optionally, you may add nobody and nogroup.

[micN]$ groupadd -g4294967294 nogroup

Intel MPSS Configuration

User's Guide 29

[micN]$ useradd -gnogroup -u4294967294 nobody

5) Start idmap daemon.

[micN]# /etc/init.d/idmapd start

6) Try to mount.

[micN]# mount -tnfs <server IP address>:/home/<dir>

 /mnt -v -onfsvers=4,soft

[micN]# ls -l /mnt

NOTE: There is no symbolic link created in /etc/rcN.d for /etc/init.d/nfsserver while

/etc/init.d/nfsserver is created.

7.10 How to Customize MIC OS

Unpack initramfs – Intel® Xeon Phi™ coprocessor file system

[host]# mkdir /provision

[host]# cd /provision

[host]# export initramfs_dir=/usr/share/mpss/boot

[host]# export \

initramfs_cpio_gz=initramfs-knightscorner.cpio.gz

[host]# gunzip <${initramfs_dir}/${initramfs_cpio_gz} | cpio –I

If using Sudo:

sudo gunzip <${initramfs_dir}/${initramfs_cpio_gz} | sudo cpio -I

You now have the following file system.

drwxr-xr-x 2 root root 4096 Nov 25 09:17 bin

drwxr-xr-x 2 root root 4096 Nov 25 09:17 boot

drwxr-xr-x 2 root root 4096 Nov 25 09:17 dev

drwxr-xr-x 26 root root 4096 Nov 25 09:17 etc

drwxr-sr-x 3 root root 4096 Nov 25 09:17 home

-rwxr-xr-x 1 root root 3512 Nov 25 09:17 init

drwxr-xr-x 3 root root 4096 Nov 25 09:17 lib

drwxr-xr-x 4 root root 4096 Nov 25 09:17 lib64

drwxr-xr-x 10 root root 4096 Nov 25 09:17 media

(Intel® MPSS)

30 Document Number: 330076-001US

drwxr-xr-x 2 root root 4096 Nov 25 09:17 mnt

drwxr-xr-x 2 root root 4096 Nov 25 09:17 proc

drwxr-xr-x 2 root root 4096 Nov 25 09:17 sbin

drwxr-xr-x 2 root root 4096 Nov 25 09:17 sys

drwxrwxrwt 2 root root 4096 Nov 25 09:17 tmp

drwxr-xr-x 11 root root 4096 Nov 25 09:17 usr

drwxr-xr-x 7 root root 4096 Nov 25 09:17 var

Customize initramfs

As an example of how to customize, the following commands enable LDAP.

1) Unpack required packages.

[host]# cp /<k1om_path>/*ldap* /provision/

[host]# rpm2cpio libldap-2.*.k1om.rpm | cpio -i

[host]# rpm2cpio nss-ldap-2*.k1om.rpm | cpio -i

[host]# rpm2cpio pam-ldap-1*.k1om.rpm | cpio -i

[host]# rm -f *ldap*.rpm

2) Configure for LDAP.

[host]# sed -i -e"s/^$/auth sufficient pam_ldap.so/"

etc/pam.d/common-auth

[host]# sed -i - e"/session/s/required/optional/"

etc/pam.d/sshd

[host]# echo "UsePAM yes" >>etc/ssh/sshd_config

[host]$ cat <<EOF >>etc/ldap.conf

URI ldap://<server IP address>/

BASE dc=example,dc=com

bind_policy=soft

EOF

Example:
[host]$ cat <<EOF >etc/ldap.conf

URI ldap://192.168.122.47/

BASE dc=example,dc=com

bind_policy=soft

EOF

3) Create an init script to prevent boot freeze.

[host]# cat <<EOF >etc/init.d/ldap_client

 case "\$1" in

start)

Intel MPSS Configuration

User's Guide 31

sed -i -e"/^passwd:/s/files\$/files ldap/" \

etc/nsswitch.conf

sed -i -e"/^group:/s/files\$/files ldap/" \

etc/nsswitch.conf

 ;;

 stop)

sed -i -e"/^passwd:/s/files ldap/files/" \

 etc/nsswitch.conf

sed -i -e"/^group:/s/files ldap/files/" \

 etc/nsswitch.conf

 ;;

*)

 echo usage \$0 \[start\|stop\]

 exit 1

 ;;

esac

exit 0

EOF

[host]# chmod a+x etc/init.d/ldap_client

[host]# cd etc/rc5.d/

[host]# ln -s ../init.d/ldap_client S99ldap_client

[host]# cd ../..

Pack initramfs

[host]# find . |cpio -o -c |gzip >../${initramfs_cpio_gz}

[host]# rm -f ${initramfs_dir}/${initramfs_cpio_gz}

[host]# mv ../${initramfs_cpio_gz} ${initramfs_dir}

Modify nsswitch.conf to prevent boot freeze

[host]# cp etc/nsswitch.conf \

/var/mpss/micN/etc/nsswitch.conf

[host]# sed -i -e"/^passwd:/s/files ldap/files/" \

/var/mpss/micN/etc/nsswitch.conf

[host]# sed -i -e"/^group:/s/files ldap/files/" \

/var/mpss/micN/etc/nsswitch.conf

(Intel® MPSS)

32 Document Number: 330076-001US

[host]# sed -i -e"/^hosts:/s/dns ldap/files/" \

/var/mpss/micN/etc/nsswitch.conf

7.11 Virtual Console Configuration and Access
When using SUSE, minicom prompts for a username and password when logging into the
coprocessor. Use micctrl --passwd<=user> to set the password for a user before using the
virtual console on minicom.

If there are multiple coprocessors, the virtual console devices are /dev/ttyMICN for the
first coprocessor, /dev/ttyMICN for the second coprocessor, and so on.

To configure minicom for virtual console access, perform the following instructions:

For each coprocessor:

1. [host]# minicom -s

2. Go to "Serial Port Setup".
a. Choose option: A - Serial Device
b. Edit Serial Device to /dev/ttyMICN
c. Hit <Enter> twice.

Go to “Modem and dialing”.

a. Choose option: A - Init string

b. Erase the entire line.

c. Hit <Enter> twice.

3. Go to "Save setup as.."

a. An input prompt “Give name to save this configuration?“ will appear.

b. Enter the preferred name, for example: micN <Enter>

4. Select "Exit from Minicom".

Repeat the above steps for the remaining coprocessor(s). Each coprocessor should have
its own config name.

To open the virtual console for micN coprocessor where the config name is micN:

[host]# minicom micN

Minicom will prompt for a login and password.

To exit minicom: <CTRL+a> <x> <Enter>

Intel MPSS Configuration

User's Guide 33

7.12 Enable Virtio Block Device for the Intel®

Xeon Phi™ Coprocessor
The virtio block device (virtblk) is accessed via the virtio data transfer mechanism. Virtio is
designed for virtualization environment like KVM. Virtblk is available on the Intel® Xeon
Phi™ coprocessor.

To use virtio block device as an ext2 file system, do the following:

1) Host side:

a) Start Intel MPSS service.

 [host]#
1
service mpss start

b) Identify which file or block device is a block device of virtblk.

 [host]# echo dev/<ForVirtioBlockTest> >\

 /sys/class/mic/<micN>/virtblk_file

The /dev/<VirtioTestTarget> file can be one of the following:

+ A regular file like /srv/aaa, or
+ LVM (Logical Volume Manager) volume, or
+ A physical device like /dev/sda*

Additionally, /sys/class/mic/micN/virtblk_file is the sysfs file for setting a block device
of virtblk.

2) Coprocessor side:

a) Login to the coprocessor as superuser.

[host]# ssh micN

b) Load the virtblk driver.

[micN]# modprobe mic_virtblk

c) Create ext2 file system on virtblk and mount it on /mnt/vda.

[micN]# mkdir -p /mnt/vda

[micN]# mkfs.ext2 /dev/vda

[micN]# mount -t ext2 \

/dev/vda /mnt/vda

d) Unmount virtblk.

[micN]# umount /mnt/vda

e) Unload virtblk driver.

[micN]# modprobe -r \

mic_virtblk

f) Exit from the coprocessor session.

[micN]# exit

(Intel® MPSS)

34 Document Number: 330076-001US

7.12.1 To use virtio as a swap device file system
1) Host side:

[host]# bash

[host]# echo /dev/<VirtioSwap>\

>/sys/class/mic/<micN>/virtblk_file

[host]# exit

2) Coprocessor side:

a) Login to the coprocessors.

[host]# ssh micN

b) Load the virtblk driver.

[micN]# modprobe mic_virtblk

c) Assign a swap device and confirm.

[micN]# mkswap /dev/vda

 [micN]# swapon /dev/vda

[micN]# more /proc/swaps

d) Stop using swap device.

[micN]# swapoff -a

e) Exit from the coprocessor session.

[micN]# exit

To use multiple virtio block devices, create multiple partitions in a virtio block device file.
Those partitions are referenced as /dev/vda1, /dev/vda2.

If the system administrator does not assign a virtio block device file, unloading the Intel
MPSS host driver will trigger the message "request comes in while coprocessor side driver
is not loaded yet. Ignore" in dmesg and /var/log/messages.

To load the coprocessor side driver, mic_virtblk, without assigning virtio block device file,
the error message, "Have set virtblk file?" will be displayed in dmesg and
/var/log/messages.

Do not use multiple sysfs device entries from /sys/class/mic/micN/virtblk_file.

7.13 Kernel Crash Dump Support for the Intel® Xeon

Phi™ Coprocessor
1) The host driver configuration option to enable/disable coprocessor kernel crash

dumps is located in /etc/modprobe.d/mic.conf.

Set crash_dump= to ‘1’ to enable or ‘0’ to disable kernel crash dump captures.

Intel MPSS Configuration

User's Guide 35

2) The mpssd daemon configuration options to tune crash dump storage location and
storage limit are at /etc/mpss/default.conf

 # Storage location and size for MIC kernel crash dumps

CrashDump /var/crash/mic/ 16

3) If a custom user space utility other than the mpssd daemon is being used, then the
steps below should be followed to obtain the kernel crash dump. The algorithm used
by mpssd to obtain the kernel crash dump is as follows:

a) Poll the sysfs entry for coprocessor state changes at
/sys/devices/virtual/mic/ctrl/subsystem/micN/state, for example.

b) Upon detection of the "lost" state, read from /proc/mic_vmcore/ and write the
contents to a crash dump file.

c) Gzip the content of the file.

d) Now reset the card and reboot it if required.

4) A gzipped kernel crash dump core file should now be available if a coprocessor OS
crash occurs at the storage location configured in step 2.

5) Install crash utility on host to analyze the crash dump (RHEL example shown):

[host]# yum install crash

6) An example on how a crash can be analyzed is shown below:

cd /var/crash/mic/micN/

gunzip vmcore-xxxx.gz

cp /opt/mpss/[version number]/sysroots/k1om-mpss-linux/ \

boot/vmlinux-2.6.38.8+mpss[version number] .

…x86_64-k1om-linux-elfedit --output-mach x86-64 vmlinux

crash vmlinux vmcore-2012-9-24-15\:50\:29

NOTE: Useful commands include bt, foreach bt, ps, log, etc.

Refer to http://people.redhat.com/anderson/crash_whitepaper/#HELP

7.14 Offload User Options
COI Security:

_Authorized

The coi_daemon supports a mode that allows system administrators to configure the
coi_daemon to spawn processes as the same user on the host. This is set up via the
/etc/coi.conf or /etc/sysconfig/coi files, with /etc/sysconfig/coi taking precedence in case
of conflict. This is supported through the --coiuser option when launching the coi_daemon
directly, or through the coiparams='--coiuser=<option>' when using a configuration file.

http://people.redhat.com/anderson/crash_whitepaper/#HELP

(Intel® MPSS)

36 Document Number: 330076-001US

The authentication occurs using a .mpsscookie file located in the user’s home directory
created and managed by the host mpss daemon.

_Dynamic

The daemon will also create a new user for each COI Process spawned on the card. Each
COI Process is owned by this new user and can only access its own created temp files and
directories, effectively isolating all COI Processes from each other for better security. To
make the coi_daemon launch with this setting by default, create or modify the
/etc/coi.conf or /etc/sysconfig/coi.conf files on the card, with /etc/sysconfig/coi.conf
taking precedence in case of conflict. Then, change or add the line with coiparams='--
coiuser=micuser' to coiparams='--coiuser=_Dynamic'. With this change, whenever you
start the coi_daemon, the daemon will start with the new functionality. To permanently
change the configuration, refer to the documentation on micctrl and file overlays.

You can view the existing /etc/init.d/coi for samples and other settings.ples.

 Default setting:
coiparams='--coiuser=micuser'

 To set authenticated users, use:
 coiparams='--coiuser=_Authorized'

 To set dynamic users, use:
 ='--coiuser=_Dynamic’

Example:

[micN]# echo coiparams='--coiuser=_Authorized' > /etc/coi.conf

 [micN]# /etc/init.d/coi restart

For detailed information about the --coiuser parameter, run coi_daemon on the card with
the --help option:

 [micN]# coi_daemon --help

7.15 Process Oversubscription
Only configure concurrent processing when there is a real need for this feature.
Otherwise, any workload running with the concurrent active processes on the device will
likely result in performance degradation.

To run more concurrent processes, set the limit of file descriptors to 10 for each offload
process. Note that, depending on the memory usage of each process, a large number of
concurrent offload processes may exhaust memory on the device.

To run 200 concurrent processes, users will need to modify the following parameters.
Changes to the configuration will not persist when modifying the files directly on the card;

Intel MPSS Configuration

User's Guide 37

a reboot will reset these settings. To permanently change the configuration, refer to the
documentation on micctrl and file overlays.

1) On the coprocessor, log into the card as superuser.

[host]# ssh micN

2) Locate and terminate the Intel® COI active process.

[micN]# ps axf|grep coi

5147 ? Sl 0:00 /usr/bin/coi_daemon --coiuser=micuser

[micN]# killall coi_daemon

3) Set the concurrent process to 200.

[micN]# ulimit -n 2000

[micN]# /usr/bin/coi_daemon \

--coiuser=micuser --max-connections=200 &

[micN]# exit

NOTE: For the complete list of coi_daemon parameters, refer to the coi_daemon help option:

coi_daemon --help

7.16 Coprocessor Post Codes
Like any other Intel® IA-32, Intel® 64 or IA-64 platform, the Intel® Xeon Phi™ coprocessor
produces POST codes at power on and boot to identify the stage that the card is at during
the boot process. These POST codes can be viewed using the Linux* command "dmesg"
after a system power on. The POST codes can also be viewed by "tailing"
/var/log/messages :

[host]# tail -f /var/log/messages | grep \

"Post Code"

The POST codes are defined as follow:

"01" LIDT

"02" SBOX initialization

"03" Set GDDR top

"04" Begin memory test

"05" Program E820 table

"06" Initialize DBOX

"09" Enable caching

"0b" Pass initialization parameters to APs

"0c" Cache C code

"0d" Program MP table

(Intel® MPSS)

38 Document Number: 330076-001US

"0E" Copy AP boot code to GDDR

"0F" Wake up APs

"10" Wait for APs to boot

"11" Signal host to download Coprocessor OS

"12" Wait for Coprocessor OS download - this also known as the "ready"
 state. The coprocessor will be in this state after powering on,
 running "micctrl -r" or "1service mpss stop". It means that the
 coprocessor is ready to receive the coprocessor OS either by a
 "1service mpss start", "1service mpss restart" or "micctrl -b"
 depending on how the coprocessor got into this state. It is not an
 error condition for the coprocessor to be in this state. See the
 sections above to learn how to start Intel MPSS when the card is showing
a
 state of POST code 12

"13" Signal received from host to boot Coprocessor OS

"15" Report platform information

"17" Page table setup

"30" Begin memory training

"31" Begin GDDR training to query memory modules

"32" Find GDDR training parameters in flash

"33" Begin GDDR MMIO training

"34" Begin GDDR RCOMP training

"35" Begin GDDR DCC disable training

"36" Begin GDDR HCK training

"37" Begin GDDR ucode training

"38" Begin GDDR vendor specific training

"39" Begin GDDR address training

"3A" Begin GDDR memory module identification

"3b" Begin GDDR WCK training

"3C" Begin GDDR read training with CDR enabled

"3d" Begin GDDR read training with CDR disabled

"3E" Begin GDDR write training

"3F" Finalize GDDR training

"40" Begin Coprocessor OS authentication

"50"-"5F" Coprocessor OS loading and setup

"6P" int 13 General Protection

"75" int 10 Invalid TSS

"87" int 16 x87 FPU Floating Point Error

"AC" int 17 Alignment Check

"bP" int 3 Breakpoint

Intel MPSS Configuration

User's Guide 39

"br" int 5 BOUND Range Exceeded

"CC" int 18 Machine Check

"co" int 9 Coprocessor Segment Overrun

"db" int 1 Debug

"dE" int 0 Divide Error

"dF" int 8 Double Fault

"EE" Memory test failed

"F0" GDDR parameters not found in flash

"F1" GBOX PLL lock failure

"F2" GDDR failed memory training

"F3" GDDR memory module query failed

"F4" Memory preservation failure

"F5" int 12 Stack Fault

"FF" Bootstrap finished execution

"FP" int 19 SIMD Floating Point

"Ld" Locking down hardware access

"nA" uOS image failed authentication

"nd" int 7 Device Not Available

"no" int 2 Non-maskable Interrupt

"nP" int 11 Segment Not Present

"oF" int 4 Overflow

"PF" int 14 Page fault

"r5" int 15 reserved

"ud" int 6 Invalid opcode

(Intel® MPSS)

40 Document Number: 330076-001US

8 Tools
Intel® Xeon Phi™ coprocessor tools are located in the /usr/bin and /usr/sbin directories.

NOTE: Executing some tools without superuser privileges may result in reduced functionality of

the tool.

8.1 Micinfo
Micinfo provides information about system configuration. It includes information about
current Intel® Xeon Phi™ coprocessor hardware and the driver.

For detailed information about micinfo, refer to the micinfo man page.

[host]# man micinfo

8.2 Micflash
Micflash is a flash utility for the Intel® Xeon Phi™ coprocessors. It is capable of updating
the card's flash, saving the existing flash from the card to a file on the host, and displaying
the current flash version that is loaded on a card.

For detailed information about micflash, refer to the micflash man page.

[host]$ man micflash

8.3 Micsmc
Micsmc is the binary executable for the Intel® Xeon Phi™ coprocessor Platform Status
Panel. The micsmc tool can function in two modes: GUI mode and command-line (CLI)
mode. GUI mode provides real-time monitoring of all detected Intel® Xeon Phi™
coprocessors installed in the system. The CLI mode produces a snap-shot view of the
status, which allows CLI mode to be used in cluster scripting applications. The micsmc tool
monitors core utilization, temperature, memory usage, power usage statistics, and error
logs, among other features.

The micsmc tool is based on the work of the Qwt project (http://qwt.sf.net)

The Status Panel User Guide is available in all supported languages, in PDF and HTML
formats, at:

/usr/share/doc/micmgmt/<lang_folder>

Or refer to the micsmc man pages to use GUI or CLI modes:

[host]$ man micsmc

http://qwt.sf.net/

Tools

User's Guide 41

8.4 Miccheck
The miccheck utility is used to verify the configuration and current status of the Intel®
Xeon Phi™ coprocessor software stack. It performs sanity checks on a host system with
Intel® Xeon Phi™ coprocessor(s) installed, by running a suite of diagnostic tests. The
default behavior is to run all enabled tests on the host system first, and then on each
Intel® Xeon Phi™ coprocessor in turn.

There are two forms of the miccheck utility in Linux*:

1) A Python program, callable directly as “miccheck.py”.

2) A binary program, executable as “miccheck”.

Both versions behave exactly the same and will produce the same output.

For detailed information about miccheck, refer to the miccheck man page, or the help
option of the program:

[host]$ man miccheck

[host]$ miccheck --help

8.5 Micnativeloadex
The micnativeloadex utility will copy an Intel® Xeon Phi™ coprocessor native binary to a
specified Intel® Xeon Phi™ Coprocessor and execute it. The utility automatically checks
library dependencies for the application. If they are found in the default search path (set
using the SINK_LD_LIBRARY_PATH environment variable), the libraries will be copied to
the card prior to execution. This simplifies running Intel® Xeon Phi™ coprocessor native
applications.

In addition, the utility can also redirect output from an application running remotely on
the Intel® Xeon Phi™ coprocessor back to the local console. This feature is enabled by
default but can be disabled with a command line option. For further details on command
line options see the help section below.

Note that if the application has any library dependencies, then the
SINK_LD_LIBRARY_PATH environment variable must be set to include those directories.
This environment variable works just like LD_LIBRARY_PATH for normal Linux*
applications. To help determine the required libraries, execute micnativeloadex with the -l
command line option. This will display the list of dependencies and which ones have been
found. Any dependencies not found will likely need to be included in the
SINK_LD_LIBRARY_PATH.

NOTE: The SINK_LD_LIBRARY_PATH must include the directory path for libcoi_host.so library

(Intel® MPSS)

42 Document Number: 330076-001US

For example:

[host]# SINK_LD_LIBRARY_PATH=/usr/lib64/

[host]# /usr/bin/micnativeloadex <native_app> -l

For more information about micnativeloadex, refer to:

[host]# /usr/bin/micnativeloadex –h

CAUTION: When linking in libraries installed in /lib64, do not add "/lib64" to the LD_LIBRARY_PATH

environment variable. This path is already implicit in the dynamic linker/loader's search

path, and modifying the path variable will result in breaking the order in which library

paths are searched for offload compilation.

8.6 Micctrl
The micctrl command is a helper for the system administrator. See Section 15 of this
User’s Guide for more information.

For more information about micctrl, refer to:

[host]# micctrl --help

8.7 Micrasd
Micrasd is the application running on the Host to handle and log the hardware errors
reported by Intel® MIC devices. It is a daemon that is started by the micras service.

Using the "-daemon" option will run micrasd in daemon mode. In this case, micrasd will
run in background and handle/log errors silently. In daemon mode, micrasd log messages
are logged in the /var/log/micras.log file.

Using the "-maint" option will enable Maintenance mode for error test and repair.

If micrasd is executed with no arguments, it runs at the console prompt, connects to
devices, and waits for errors. Use Ctrl-C to exit micrasd and return to the console prompt.

Micrasd can also be run as a Linux* system service. The Linux* "service" command gives
access to start and stop the micras service. For micras service use:

[host]# 1service micras start

[host]# 1service micras stop

Be aware that micras service has a dependency on the mpss service. The micras service
must be started after the mpss service, and be stopped prior to stopping the mpss
service. To automatically start the micras service, use the command:

[host]# chkconfig micras on

Tools

User's Guide 43

For RHEL 7:

[host]# systemct1 enable micras

Use "off" as an argument to disable automatically starting the coprocessor when the host
boots.

The errors will be logged into Linux* syslog under /var/log/messages. Use "micras" tag to
locate them.

For more information about micrasd, refer to:

[host]# micrasd -help

8.8 Mpssflash
The mpssflash utility is the POSIX version of the micflash tool. For more information, refer
to the man page.

[host]$ man mpssflash

8.9 Mpssinfo
The mpssinfo utility is the POSIX version of the micinfo tool. For more information,

refer to the man page.

[host]$ man mpssinfo

8.10 Intel® Xeon Phi™ Coprocessor Shell Environment
The Linux* environment on the coprocessor utilizes BusyBox to provide a number of
Linux* utilities. The usage of these tools may differ slightly when compared to the usage
of similar tools provided with the host Linux* distribution.

For example, the usage of netcat in the Intel® Xeon Phi™ coprocessor environment is:

nc [-iN] [-wN] [-l] [-p PORT] [-f FILE|IPADDR PORT] [-e PROG]

However, the conventional netcat utility usage is:

nc [-46DdhklnrStUuvzC] [-i interval] [-p source_port]

[-s source_ip_address] [-T ToS] [-w timeout] [-X proxy_protocol]

[-x proxy_address[:port]] [hostname] [port[s]]

To listen to a tcp port 45678, the user will need to use the following command:

nc -lp 45678

Instead of

nc -l 45678

For more information regarding BusyBox, see the link http://www.busybox.net/

http://www.busybox.net/

(Intel® MPSS)

44 Document Number: 330076-001US

9 Recompiling Modules and RPMs from

the Intel MPSS Release
The source RPMs required for rebuilding the MPSS and ofed driver modules (see
readme.txt, Sec. 2.1 ,“Requirements”, under “Resolution 2”, as well as Sec. 9.1 in this
User’s Guide) are included in the Intel MPSS package tar archive.

 Extract the Intel MPSS package. The source RPM files will be included in the
mpss-[version number]/src/ folder.

[host]$ tar xvf mpss-[version number]\

-[distribution].tar

The source code required to build GPL binaries is included in the source tar archive.

1) Go to the Intel® Developer Zone website (Intel® DZ): http://software.intel.com/en-
us/articles/intel-manycore-platform-software-stack-mpss.

Download the mpss-src-[version number].tar file from the “SOURCE” link associated
with your Intel MPSS release.

2) Extract the source archive. The archive will be included in the
mpss-[version number]/src/ folder.

[host]$ tar xvf mpss-src-[version number].tar

9.1 Recompiling the Intel MPSS RPM specifically for

OFED

NOTE: The uninstall script will not uninstall rebuilt drivers. You must remove them manually

before running the uninstall.sh script.

On RedHat: [host]# yum erase <name of rebuilt package\ rpm>

On Suse Linux: [host]# zypper remove <name of rebuilt\

package rpm>

The ofed kernel modules need to be recompiled if the kernel is upgraded or changed.
First, follow the instructions in readme.txt, Section 2.1, “Requirements”, under
“Resolution 2”, and install the resultant mpss-modules and mpss-modules-dev RPMs.
Then, rebuild the ofed-driver modules against the new mpss-modules and kernel:

 Red Hat* Enterprise Linux* systems:

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Recompiling Modules and RPMs from the Intel MPSS Release

User's Guide 45

1) Install the kernel building prerequisites:

[host]# yum install kernel-headers kernel-devel

2) Rebuild the RPMs from the source RPMs:

[host]$ cd <folder where extracted tar file\

expanded>/src/

[host]$ rpmbuild --rebuild ofed-driver-*.src.rpm

3) Install the OFED binary RPMs located under $HOME/rpmbuild:

[host]# rpm -ivh $HOME/rpmbuild/RPMS/x86_64/*rpm

 SUSE* Linux* Enterprise Server (SLES) 11 systems:

1) Install the kernel building prerequisites:

[host]# zypper install kernel-default-devel

2) Rebuild the RPMs from the source RPMs:

[host]$ cd <folder where extracted tar \

file expanded>/src/

[host]$ rpmbuild --rebuild ofed-driver-*.src.rpm

3) Install the OFED binary RPMs located under /usr/src:

[host]# rpm -ivh /usr/src/packages/RPMS/x86_64/*rpm

Once these steps are completed, restart Intel MPSS by rebooting or performing the
following:

[host]# 1service ofed-mic stop

[host]# 1service openibd stop

[host]# 1service mpss unload

[host]# 1service mpss start

[host]# 1service openibd start

[host]# 1service ofed-mic start

9.2 Recompiling the Intel MPSS GANGLIA* Modules

NOTE: If you recompile you must manually uninstall the new rpm using "yum erase <my re-

compiled rpm>" before running the uninstall script.

Support enabled for Red Hat* Enterprise Linux* 6.3, 6.4, 6.5, and SUSE* Linux* Enterprise
Server (SLES) 11 SP2 and SP3.

1) Install prerequisites (see Section 3.1, "Requirements").

2) Install Intel MPSS (see the Intel MPSS Readme, Section 2.2, "Steps to Install Intel
MPSS using OFED+).

(Intel® MPSS)

46 Document Number: 330076-001US

3) Extract mpss-ganglia-mpss.tar.bz2.

[host]# tar xvf mpss-ganglia-mpss.tar.bz2

4) Define the environment variable CROSS_COMPILE.

[host]# export CROSS_COMPILE=/opt/mpss/[version\ number]

/sysroots/x86_64-mpsssdk-linux/usr/bin/k1om\ -mpss-linux/k1om-

mpss-linux

5) Regenerate the GANGLIA* modules.

[host]# make

NOTE: Ensure that ganglia-devel-3.1.7, apr-devel-1.3.9-3, and mpss-sdk-k1om-[version

number] are installed. It may be required to setup include paths.

9.3 Recompiling the Intel MPSS MIC Management

Modules
Support enabled for Red Hat* Enterprise Linux* 6.3, 6.4, 6.5, and SUSE* Linux* Enterprise
Server (SLES) 11 SP2 and SP3.

Make sure that RPMs mpss-modules-headers-[version number], mpss-modules-headers-
dev, libmicmgmt0, libmicmgmt-dev, libscif0-[version number], libscif-dev and all
prerequisites are installed.

Make sure that the mpss-metadata-[version number].tar.bz2 source tarball is untarred

in a directory of your choice. You can find the mpss-metadata-[version number].tar.bz2

file in mpss-src-[version number].tar.

1) Install Intel MPSS (see the Intel MPSS Readme, Section 2.2, "Steps to Install Intel
MPSS").

2) Install the “a2x” utility.

3) Extract mpss-micmgmt-[version number].tar.bz2

[host]# tar xvf mpss-src-[version number].tar

[host]# cd mpss-[version number]/src

[host]# tar xvf mpss-micmgmt-[version number].tar.bz2

[host]# tar xvf mpss-metadata-[version number].tar.bz2

4) Regenerate the Intel MPSS MIC Management modules:

[host]# cd mpss-micmgmt-[version number]

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.mk miclib/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.c miclib/

Recompiling Modules and RPMs from the Intel MPSS Release

User's Guide 47

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.mk apps/mpssinfo/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.c apps/mpssinfo/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.mk apps/mpssflash/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.c apps/mpssflash/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.mk apps/micsmc/

[host]# cp ../mpss-metadata-[version number]\

/mpss-metadata.c apps/micsmc/

[host]# make lib

Set the DESTDIR environment variable to the desired install path.

[host]# make install_lib

[host]# make

[host]# make install

A build directory will be created at DESTDIR, and everything will be installed there.

NOTE: If DESTDIR=/ is specified, the files are installed to their default locations under the

/usr directory.

9.4 How to Extract and Use the MYO Open Source

Distribution
MYO source is delivered in the file mpss-myo-[version number].tar.bz2. In the tar file, the
files are a tree relative to the mpss-myo-[version number] directory. Extract the archive to
the desired directory with the following steps.

[host]$ cd [directory of choice]

[host]$ tar -xf mpss-myo-[version number].tar.bz2

[host]$ cd mpss-myo-[version number]

After MYO is extracted, the myo directory tree will be similar to the following:

 mpss-myo-[version number]
 |-- include Contains header files used in the build of applications and
tutorials.
 |-- src Contains source files of MYO runtime library.
 |-- src/include Contains header files used in the build of the library.
 |-- tools Contains the environment setting configuration files.

(Intel® MPSS)

48 Document Number: 330076-001US

 |-- docs Contains myo reference documents.
 `-- docs/tutorials Contains tutorials that demonstrate how to program with MYO.

Drilling down further into the src directories, a map of where features are implemented is
as follows:

|-- allocator Contains the memory management module (Memory
| Allocator).

 |-- communication Contains the implementation of the communication.
 |-- consistent Contains the implementation of VSM protocol.
 |-- include Contains all internal header files.
 |-- machinedep Contains the platform dependent portion of MYO.
 |-- misc Contains all other files.
 |-- Makefile Makefile for MYO libraries.
 |-- pinnedmem Contains the implementation of get pinned memory.
 |-- rfunc Contains the implementation of APIs related with remote
 | function call.
 |-- svar Contains the implementation of APIs related with shared
 | variables.
 `-- sync Contains global (cross-bus) sync operations (mutex, barrier and

semaphore).

In the mpss-myo-[version number] directory, the README text file explains the purpose,
content, and use of the MYO Open Source Distribution. It includes information about
compiler selection, building and installing the Myo libraries, Myo system requirements,
and the Myo tutorials.

For information about MYO API function calls, refer to the MYO API man pages.

They can be viewed by entering:

[host]$ man <function-name>

The list of MYO API man pages follows:

myoAcquire.3 myoiRemoteCall.3
myoAcquireOwnership.3 myoiRemoteFuncLookupByAddr.3
myoArenaAcquire.3 myoiRemoteFuncLookupByName.3
myoArenaAcquireOwnership.3 myoiRemoteFuncRegister.3
myoArenaAlignedFree.3 myoiRemoteThunkCall.3
myoArenaAlignedMalloc.3 myoiSetMemConsistent.3
myoArenaCreate.3 myoiSetMemNonConsistent.3
myoArenaDestroy.3 myoiTargetFptrTableRegister.3
myoArenaFree.3 myoiTargetSharedMallocTableRegister.3
myoArenaGetHandle.3 myoiVarRegister.3
myoArenaMalloc.3 myoMutexCreate.3
myoArenaRelease.3 myoMutexDestroy.3
myoArenaReleaseOwnership.3 myoMutexLock.3
myoBarrierCreate.3 myoMutexTryLock.3
myoBarrierDestroy.3 myoMutexUnlock.3

Recompiling Modules and RPMs from the Intel MPSS Release

User's Guide 49

myoBarrierWait.3 myoRelease.3
myoGetMemUsage.3 myoReleaseOwnership.3
myoHTimeOn.3 myoSemCreate.3
myoiCheckResult.3 myoSemDestroy.3
myoiGetResult.3 myoSemPost.3
myoiHostFptrTableRegister.3 myoSemTryWait.3
myoiHostSharedMallocTableRegister.3 myoSemWait.3
myoiHostVarTablePropagate.3 myoSharedAlignedFree.3
myoiLibFini.3 myoSharedAlignedMalloc.3
myoiLibInit.3 myoSharedFree.3
myoiMicVarTableRegister.3 myoSharedMalloc.3

9.5 How to Extract and Use the COI Open Source

Distribution
COI source is delivered in the file mpss-coi-[version number].src.tar.bz2. In the tar file,
the files are packaged with paths relative to the original source directory structure.

To extract and build the COI source, do the following:

Ensure the Intel MPSS driver and Intel MPSS SDK RPM’s are installed from the Intel

MPSS-[version number].tar package.

[host]$ tar xvf mpss-src-[version number].tar

[host]$ cd mpss-[version number]/src/

[host]$ tar xvf mpss-coi-[version number].tar.bz2

After COI is extracted, the COI directory tree will be similar to the following:

 |-- docs Contains the
COI_getting_started.pdf for instructions
 | on working with COI.
 |-- src Contains source files of COI
runtime library. Also
 | contains the
release_notes.txt document, which
 | describes new features
and known issues.
 |-- src/api Contains the upper-level source
files for API calls into
 | COI.
 |-- src/docs_config Contains the scripts for creating the PDF
documents for
 | COI.

(Intel® MPSS)

50 Document Number: 330076-001US

 |-- src/include Contains header files used in the build of
the COI
 | library.
 |-- src/legal Contains the source for specific license
headers for
 | parts of COI.
 |-- src/mechanism Contains the low-level API source files that make
up the
 | core of the COI
functionality.
 |-- src/policy Contains the code for the Task Scheduling
design in COI.
 |-- src/tools Contains the source for the tools that
debug and utilize
 | COI.
 |-- src/tutorial Contains tutorials that demonstrate how
to program
 | with COI.
 |-- Makefile Makefile used to build all COI source
code.
 |-- coi_daemon_files.mk Sub Makefile config for building the COI daemon
files.
 |-- coi_device_files.mk Sub Makefile config for building the COI device
files.
 |-- coi_host_files.mk Sub Makefile config for building the COI host files.
 `-- coi_host_version_files.mk Sub Makefile config for building the COI host version files.

 |-- build Overall Build output directory.
 |-- build/device-linux-debug Debug built libraries and binaries for coprocessor-side
 | COI.
 |-- build/device-linux-release Release built libraries and binaries for coprocessor-side
 | COI.
 |-- build/host-linux-debug Debug built libraries and binaries for host-side
COI.
 `-- build/host-linux-release Release built libraries and binaries for host-side COI.

NOTE: Execute the next line only if mpss-metadata-[version number].tar.bz2 is not extracted

yet.

[host]$ tar xvf mpss-metadata-[version number].tar.bz2

[host]$ cd mpss-coi-[version number]

[host]$ make -I ../mpss-metadata-[version number]/

To directly install the COI libraries and binaries, first make sure that the Intel MPSS driver
is running, then do the following:

Installing Host Binaries and Libraries:

Recompiling Modules and RPMs from the Intel MPSS Release

User's Guide 51

[host]$ cp build/host-linux-[debug|release]/libcoi_host.so\

/usr/lib64/

[host]$ cd /usr/lib64/

 [host]# ln -s libcoi_host.so libcoi_host.so.0

Installing Card-side Binaries and Libraries:

[host]# ssh mic[card number]

NOTE: Here we need to kill the coi_daemon so that the new one can be installed

[micN]# killall -9 coi_daemon

[micN]# exit

[host]# scp build/device-linux-[debug|release]/coi_daemon

mic[card\ number]:/usr/bin/coi_daemon

[host]# scp build/device-linux-[debug|release]/libcoi_device.so

\ mic[card number]:/usr/lib64/libcoi_device.so

 [host]# ssh mic[card number]

[micN]# cd /usr/lib64/

[micN]# ln -s libcoi_device.so libcoi_device.so.0

[micN]# coi_daemon --coiuser=micuser&

[micN]# exit

Once installed, and now that the new coi_daemon is running, the new COI binaries and
libraries will be in use in the current running driver.

Building the COI stack also builds the tools as well. If you wish to install the newly built
tools coitrace and micnativeloadex, do the following:

[host]# cp build/host-linux-[debug|release]/coitrace /usr/bin/

[host]# cp build/host-linux-[debug|release] \

/libcoitracelib.so /usr/lib64/

[host]# cp build/host-linux-[debug|release] \

/micnativeloadex /usr/bin/

[host]# cd /usr/lib64/

 [host]# ln -s libcoitracelib.so libcoitracelib.so.0

COI Tutorial Build and Execution Instructions:

To build and run the COI tutorials, follow the instructions below:

1) Ensure the prerequisites are installed:

 mpss-[version number]*.rpm must be installed.

2) Build instructions:

 Change to the src/tutorial/<tutorial> directory and run 'make'.

[host]$ cd <tutorial>

(Intel® MPSS)

52 Document Number: 330076-001US

[host]# make

 3) Execution instructions:

 a) Ensure the driver is running. Set default configuration values and start the
 Intel MPSS service.

[host]# micctrl --initdefaults

[host]# 1service mpss start

 b) Execute the tutorial.

[host]$ cd <tutorial>/debug

[host]# ./<tutorial>_source_host

Supported Environments for the Intel MPSS 3.4 Release

User's Guide 53

10 Supported Environments for the Intel

MPSS 3.4 Release
For more information about the supported Intel® Xeon Phi™ coprocessor instructions,
refer to the Intel® Xeon Phi™ Coprocessor Instruction Set Reference Manual located at
http://software.intel.com/mic-developer.

10.1 Supported Environments

Compiling for the Intel MPSS 3.4 release is only supported in:

 Red Hat* Enterprise Linux* 64-bit 6.2 kernel 2.6.32-220

 Red Hat* Enterprise Linux* 64-bit 6.3 kernel 2.6.32-279

 Red Hat* Enterprise Linux* 64-bit 6.4 kernel 2.6.32-358

 Red Hat* Enterprise Linux* 64-bit 6.5 kernel 2.6.32-431

 Red Hat* Enterprise Linux* 64-bit 7.0 kernel 3.10.0-123

 SUSE* Linux* Enterprise Server SLES 11 SP2 kernel 3.0.13-0.27-default

 SUSE* Linux* Enterprise Server SLES 11 SP3 kernel 3.0.76-0.11-default

Intel strongly recommends using the included GCC compiler ONLY when building the
kernel, LSB, and the Symmetric Communications Interface (SCIF) driver. For all other
builds, using the Intel® C Compiler or the Intel® FORTRAN Compiler is strongly
recommended. Using inappropriate compilers may lead to unpredictable results and is
not an Intel tested or supported configuration.

10.2 Compiling Supported Environments
The Linux* host driver source is supplied. This makes it possible to run on unsupported
Linux* releases, which may produce driver errors and incompatibilities with the supplied
host libraries. The supplied host libraries have been produced with particular versions of
the GCC compiler and may not link correctly to code produced by older or newer GCC
compilers.

http://software.intel.com/mic-developer

(Intel® MPSS)

54 Document Number: 330076-001US

10.3 User Mode Code for Symmetric

Communications Interface (SCIF)
SCIF applications must be compiled for both the Intel® Xeon Phi™ coprocessor Linux* OS
and the host Linux* OS, depending on the direction of connection establishment. For
testing purposes, every test can be compiled for both sides and run as required.

An example to establish a connection with the scif_connect() function has been provided.
The following Makefile will compile versions for both the host operating system and the
coprocessor Linux* operating system.

 CC=icc

 XCC=icc -mmic

 XCCPATH=/usr/linux-k1om-4.7/bin

 all: scif_contest_mic scif_contest_host

 scif_contest_mic: scif_contest.c

 (export PATH=$$PATH:$(XCCPATH); \

 $(XCC) -o scif_contest_mic scif_contest.c -lscif -lpthread)

 scif_contest_host: scif_contest.c

 $(CC) -DHOST -o scif_contest_host scif_contest.c -lscif -lpthread

 clean:

 rm -f scif_contest_mic scif_contest_host

10.4 Registration Caching in SCIF

NOTE: The mechanism for specifying the pinned pages limit may change in a future release.

Registration caching is a SCIF feature intended to improve the performance of
scif_vreadfrom()/scif_vwriteto(). When registration caching is enabled, SCIF caches virtual
to physical address translations of the virtual addresses passed to
scif_vreadfrom()/scif_vwriteto(), thus eliminating the overhead of pinning pages when
the same virtual range is specified in future calls. Registration caching is enabled by
default.

 To disable registration caching, the module parameter control file
/etc/modprobe.d/mic.conf must be edited.

Set "reg_cache" equal to zero in the options line for the "mic" module.

 A driver reload is required. Follow the procedure:

Supported Environments for the Intel MPSS 3.4 Release

User's Guide 55

[host]# 1service mpss unload

[host]# 1service mpss start

There is a per-node tunable limit on the maximum number of pinned pages per SCIF
endpoint. This limit can only be modified by the root user.

 To set the maximum number of pinned pages when the driver is loaded:

[host]# echo limit > /proc/scif/reg_cache_limit

Where limit is the number of 4K pages in decimal.

 To disable caching at runtime, set the limit to 0 on each node.

10.5 GNU Debugger (GDB) for the Intel® Xeon Phi™

Coprocessor

 Running natively on the Intel® Xeon Phi™ coprocessors

Users need to install gdb-7.5+mpss*.k1om.rpm to each respective Intel® Xeon Phi™
coprocessor. The mpss-[version-number]-k1om.tar file contains this RPM.

Refer to Section 11.3, “Installing Card Side RPMs” for card side installation
procedures.

 Running remote GDB on the Intel® Xeon Phi™ coprocessors

The remote Intel® Xeon Phi™ coprocessor enabled GDB client is located on the host
at:

/opt/mpss/[version number]/sysroots/x86_64-mpsssdk-linux/usr/bin/k1om-mpss-linux/

k1om-mpss-linux-gdb

Where [version number] is the Intel MPSS version number: 3.x.

The GDB Server is pre-installed in the card by default and is located under:

/usr/bin/gdbserver

For complete GDB remote debugging instructions, refer to the chapter “Debugging
Remote Programs” in the GDB manual.

 GDB remote support for data race detection

GDB supports data race detection based on Intel® PDBX data race detector for Intel®
Many Integrated Core (MIC) architecture. See the "Debugging data races" chapter in
the GDB manual.

Ensure that the environment is set up correctly and that GDB finds the correct version
of the Intel® compiler's run-time support libraries. See the PROBLEMS-INTEL file in the
GDB source package for additional help on troubleshooting.

(Intel® MPSS)

56 Document Number: 330076-001US

 Debugging heterogeneous/offload applications

Heterogeneous application debugging is supported in Eclipse*. This requires the
installation of an Eclipse* plugin. Install mpss-eclipse-cdt-mpm-*.x86_64.rpm.

Installation steps for the Eclipse* plugin:

1) From the Eclipse* menu use "Help" -> "Install new Software".

2) Click on "Add..."

3) Click on "Local..."

4) Use the "/usr/share/eclipse/mic_plugin" path and click "OK".

5) Click “OK” again in the popup window.

6) Unselect the following two checkboxes: "Group items by category" and "Contact
all update sites during install..."

7) Select the plugin using the corresponding checkbox, then click “Next”.

8) Click “Next” .

9) Accept the license agreement and click "Finish".

10) In the “Security Warning” popup, click “OK”.

11) Restart the Eclipse* IDE.

 Enabling MIC GDB Debugging for Offload Processes

An environment variable must be set in order to allow the debugger to enable
module name mapping with the generated files needed to attach to the card side
offload processes. To do this, execute the following step:

[host]$ export AMPLXE_COI_DEBUG_SUPPORT=TRUE

10.6 Ulimit Checks for Max Locked Memory in SCIF
This feature enforces ulimit checks of the memory that scif_register() locks. Pages locked
using scif_register() are counted towards the ulimit.

NOTE: In kernel versions later than 3.1.0, the kernel has two different limits for locked pages:

one limit for pages locked using standard system calls and another limit for pages

locked by kernel modules on behalf of user processes.

This feature is disabled by default.

 To enable the feature, the module parameter control file /etc/modprobe.d/mic.conf
must be edited:

Set "ulimit" equal to one in the options line for the "mic" module.

 A driver reload is required. Follow the procedure:

[host]# 1service mpss unload

[host]# 1service mpss start

Important Considerations

User's Guide 57

11 Important Considerations

11.1 Disabling and Enabling Power Management
Package C3 (PC3), and Package C6 (PC6) are power management states that are entered
when the coprocessor is idle for a period of time. Power management states are enabled
by default in Intel MPSS. Under normal circumstances, the host sends traffic to awaken
the coprocessor and resume execution. The following instructions indicate how to disable
and re-enable power management.

PREREQUISITES:

The following settings can only be modified by the root user:

 To disable power management package states and allow successful execution of
an application that uses the sleep() function on the coprocessor, change the line
in each /etc/mpss/micN.conf file to this:

PowerManagement "cpufreq_on;corec6_off;pc3_off;pc6_off"

 To re-enable power management, change the line in each /etc/mpss/micN.conf
file to this:

PowerManagement "cpufreq_on;corec6_on;pc3_on;pc6_on"

Where N is an integer number (0, 1, 2, 3, etc.) that identifies each coprocessor
installed in the system.

The values may also be changed with the micctrl --pm=<value> command. To disable
power management, set <value> to off. To enable, set <value> to default.

NOTE: Restarting of the coprocessor(s) is required after modifications to the micN.conf files.

Use the following command to restart:

[host]# micctrl -R

11.2 Disabling and Enabling the Memory Control

Group (cgroup)
The memory Control Group is disabled by default in this release, but it can be enabled in
the /etc/mpss/micN.conf files. Enabling the memory cgroup decreases the amount of
memory available to applications on the coprocessor by about 120MB.

PREREQUISITES:

(Intel® MPSS)

58 Document Number: 330076-001US

The following settings can only be modified by the root user:

 To enable the memory cgroup, set the 'Cgroup memory' variable to ‘enabled’ in
the /etc/mpss/micN.conf files and then restart the Intel MPSS service:

1) In /etc/mpss/micN.conf:

 Cgroup memory=enabled

2) Restart the Intel MPSS service:

[host]# 1service mpss restart

 To disable the memory cgroup, set the 'Cgroup memory' variable to ‘disabled’ in
the /etc/mpss/micN.conf files and then restart the Intel MPSS service:

1) In /etc/mpss/micN.conf:

Cgroup memory=disabled

2) Restart the Intel MPSS service:

[host]# 1service mpss restart

11.3 Installing Card Side RPMs
To install card side RPMs, use one of the procedures outlined below in Sections 11.3.1
through 11.3.3.

Currently, the mpss-[version number]-k1om.tar file contains the card-side RPMs. Go to
the Intel® Developer Zone website (Intel® DZ):
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss.
Download the mpss-[version number]-k1om.tar file from the “Software for Coprocessor
OS” link associated with your Intel MPSS release.

In order to use zypper to install RPM files located on the card side, coreutils must first be
installed.

To do this:

[host]$ xvf mpss-[version number]-k1om.tar

[host]$ cd mpss-[version number]/k1om

[host]# scp coreutils*.rpm micN:.

[host]# scp libgmp*.rpm micN:.

[host]# ssh micN

[micN]# rpm -ihv coreutils*.rpm libgmp*.rpm

11.3.1 Copy RPMs to the Card Using SCP
Steps:

1) Extract the mpss-[version number]-k1om.tar file. This will create the mpss-[version
number]/k1om directory.

[host]$ tar xvf mpss-[version number]-k1om.tar

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Important Considerations

User's Guide 59

2) Change to the extracted folder.

[host]$ cd mpss-[version number]/k1om

3) SCP the RPMs to the card.

[host]# scp <rpm_packages> micN:/tmp

4) SSH to the card.

[host]# ssh micN

5) Install the RPMs via rpm or zypper utility (zypper example shown).

[micN]# zypper install /tmp/<rpm_package_name>

6) Repeat steps 3-5 for the remaining card(s).

Where N is an integer number (0, 1, 2, 3, etc.) that identifies each coprocessor
installed in the system.

11.3.2 Copy RPMs to Card Using a Repo and Zypper (via HTTP)
Set up an http server (reachable from the card) offering Intel MPSS RPM repodata. The
steps in this section require that Python and the createrepo tool be previously installed.

Steps:

1) Create a folder to place the Intel MPSS tarball.

[host]$ mkdir mpss-repo

2) Go to the Intel® Developer Zone website (Intel® DZ): http://software.intel.com/en-
us/articles/intel-manycore-platform-software-stack-mpss.

Download the mpss-[version number]-k1om.tar file from the “Software for
Coprocessor OS” link associated with your Intel MPSS release.

3) Extract the tarball file.

[host]$ tar xvf mpss-[version number]-k1om.tar

4) Change to the extracted folder.

[host]$ cd mpss-[version number]

5) Use the createrepo tool to create a new repo.

[host]$ createrepo .

6) Start the http server as follows:

[host]# python -m SimpleHTTPServer

7) Create a service to provide RPM installation at every card boot. To achieve this, create
a folder under /var/mpss/common/etc/init.d

[host]# mkdir -p /var/mpss/common/etc/init.d

8) Under /var/mpss/common/etc/init.d create the service file named install-service as
follows (example shown applies to GANGLIA* installation):

http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

(Intel® MPSS)

60 Document Number: 330076-001US

#!/bin/sh

BEGIN INIT INFO

Provides: install-service

Required-Start:

Required-Stop: $local_fs

Default-Start: S

Default-Stop: 0 6

Short-Description: Load node dependencies before notified as

online

Description: Load node dependencies before notified as

online

zypper ar http://host:8000 k1om-mpss-[version number]

zypper install ganglia

zypper install mpss-ganglia

9) Restart the mpss service.

[host]# 1service mpss restart

11.3.3 Use the Micctrl Utility
Steps:

1) In 3.x-based releases, place the RPM(s) for the card in a known location on the host.

2) Execute the micctrl command:

[host]# micctrl --overlay=rpm \

--source=<location of file> --state=on

Where location is the absolute path to a single RPM or a directory where all RPMs
contained in it are installed on the card at boot. The state parameter specifies whether or
not to include the RPM(s) on the file system.

NOTE: When using the micctrl utility to install card side RPMs, it is not necessary to start the

ofed-mic service (Section 2.5, step 4 is not required).

11.4 BIOS Setting and Process Affinity
BIOS setting and process affinity have a significant performance impact on SCIF. Without
the correct BIOS and user process affinity settings, you can expect to see considerable
performance penalties.

11.4.1 BIOS Setting
Make sure Intel® Turbo Boost Technology is enabled in the BIOS.

Important Considerations

User's Guide 61

11.4.2 Process Affinity
In the Intel® Xeon Phi™ product, each coprocessor belongs to a particular NUMA (non-
uniform memory access) node. A device that is connected to a particular node can access
the memory in this node faster than it can access the memory in the other nodes. To get
the maximum SCIF bandwidth, ensure your process runs on the same node as the
coprocessor you communicate with by setting the process affinity.

(Intel® MPSS)

62 Document Number: 330076-001US

12 Intel MPSS Boot Configuration Details
The Intel® Xeon Phi™ coprocessors are PCIe based add-in cards that run a version of

Linux* tailored for these coprocessors. The Linux* OS for Intel® Xeon Phi™ coprocessors,

as well as a range of drivers and utilities, are included in the Intel® Manycore Platform

Software Stack (Intel MPSS). The responsibilities of these drivers and utilities include:

 Placing the Linux* boot image and root file system into coprocessor memory.

 Controlling coprocessor booting, shutdown and reset.

 Providing a virtual console.

 Providing an IP (over PCIe) networking connection to each coprocessor.

 Directing power management of each coprocessor.

 Supporting high speed data transfer to and from the coprocessor.

The PCIe bus is the only communication channel available to the Intel ® Xeon Phi™
coprocessors. Therefore configuration and provisioning of the OS to be executed on each
Intel® Xeon Phi™ coprocessor is performed by the host system in which the coprocessor is
installed.

The Linux* kernel and file system image for the Intel ® Xeon Phi™ coprocessors are
installed into the host file system as part of Intel MPSS installation. The coprocessor file
system image can be configured through the use of the micctrl utility described below
and/or directly by the host root.

The mic.ko driver is the component of Intel MPSS that provides PCIe bus access and
implements the coprocessor boot process. To boot a coprocessor, mic.ko injects the
Linux* kernel image and a kernel command line into coprocessor memory and signals it to
begin execution. A virtual console driver and a virtual network driver are also built into
mic.ko. Finally, mic.ko directs power management of the installed coprocessors and
provides a high speed data transfers over PCIe through its Intel® Symmetric
Communications Interface (SCIF) driver.

The mpssd daemon directs the initialization and booting of the Intel® Xeon Phi™
coprocessors based on a set of configuration files. mpssd is started and stopped with the
Linux* service mpss, and instructs the cards to boot or shutdown. It supplies the final file
system image to the cards when requested. mpssd will also log debug information from
each coprocessor.

micctrl is a utility through which the user can control (boot, shutdown, reset) each of the
installed Intel® Xeon Phi™ coprocessors. micctrl also offers numerous options to simplify
the process of configuring each coprocessor. Section 15 of this document, “The micctrl
Utility”, describes the micctrl utility in detail.

Intel MPSS Boot Process

User's Guide 63

13 Intel MPSS Boot Process
Booting the Linux* kernel on the Intel® Xeon Phi™ coprocessor requires a number of
steps. Figure 2 Boot process for Intel MPSS shows the sequence of steps that are
performed during the Intel MPSS boot process.

mpssd startsservice mpss start

MIC driver tells
Intel® Xeon Phi™
coprocessor to
execute image

Install all RPMs in /
RPMS-to-install

Execute /sbin/init in
initial ram disk

Switch_root to NFS
mount

Mount NFS root
export

Execute /sbin/init in
new root partition

Inform host the
Intel® Xeon Phi™

coprocessor is ready
for use

service mpss start

Is the Root
Device a Ram

Disk?

Create ram disk
image

Is the Root
Device a static

Ram Disk?

Ensure ram disk
image exists

Mpssd sets kernel
command line

Select base cpio
image as ram disk

Mpssd instruct
driver to inject Linux
kernel and ram disk

images into card
memory

Is Root Device a
Ram Disk

Create and mount
tmpfs – copy init

ram disk files

Switch_root to
tmpfs

Yes

No
Root Device is NFS

export

Is the Root
Device NFS

export?

Yes

Yes

Yes

Evaluate Code

No

NoNo

Figure 2 Boot process for Intel MPSS

(Intel® MPSS)

64 Document Number: 330076-001US

13.1 Booting the Intel® Xeon Phi™ Coprocessor
This section describes the key steps that are performed during the Intel MPSS boot
process on the Intel® Xeon Phi™ coprocessor.

13.1.1 Kernel Command Line
On most Intel® based systems, loading and executing the Linux* kernel image is
controlled by the grub boot loader. In the grub configuration file, each possible kernel
definition contains a number of parameters to be passed to Linux* through its kernel
command line. In the Intel MPSS boot process, this is done by the mpssd daemon parsing
its configuration files. The kernel command line is created based on values in the
configuration files and placed in /sys/class/mic/mic<id>/cmdline for the driver to retrieve
it.

13.1.2 Instruct the Driver to Boot the Intel® Xeon Phi™
Coprocessor
The mpssd daemon requests the Intel® Xeon Phi™ coprocessor to start executing the
Linux* image by writing a boot string to the /sys/class/mic/mic<id>/state file. This file is a
link into the MIC driver through a Linux* sysfs entry. The format of the request must be:

boot:linux:<Linux* image file name>:<ram disk file name>

The options reset and shutdown may also be written to state entry and will be discussed
later.

The second part of the boot argument indicates to boot a Linux* image. It may also be
set to elf to indicate booting a standard ELF format file. Documenting non-Linux* boot is
beyond the scope of this document.

When the driver receives the boot request, it first checks to see whether the card is in the
ready state. If the card is not ready to boot it will return an error through the write call to
the sysfs entry and not attempt to boot the card. Otherwise it sets the state of the Intel®
Xeon Phi™ coprocessor to booting.

The driver then saves the image and initial ram disk file names for later retrieval through
the /sys/class/mic/mic<id>/image and /sys/class/mic/mic<id>/initramfs sysfs entries. It
also sets the mode to indicate it is booting a Linux* image

The driver will copy the kernel command line setting requested by the mpssd daemon,
along with a number of addresses in host memory required by various drivers in the
Linux* image to its location in card memory. It then copies the requested Linux* image
and ram disk files into the Intel® Xeon Phi™ coprocessor’s memory.

The last step is to write to the Intel® Xeon Phi™ coprocessor register instructing it to start
executing the injected image.

Intel MPSS Boot Process

User's Guide 65

13.1.3 Linux* Kernel Executes
Executing the Linux* kernel code functions as it does on any Intel® based machine. It
initializes hardware, starts kernel services, and sets all the CPUs to the “online” state.
When the kernel is ready, it initializes its attached initial ram disk image and starts
executing the init program in the image.

As on any Intel® based Linux* system, the initial ram disk contains the loadable modules
required for the real root file system. Many of the arguments passed in the kernel
command line are addresses required for the modules to access host memory. The init
program parses the kernel command line for needed information and creates the
/etc/modprobe.conf file needed by the card’s init process.

The last step is for the init program to check the root= parameter in the kernel command
line for the type of device containing the root file system, and take the appropriate
actions.

13.1.4 Root is the Initial Ram Disk
This option is no longer available.

13.1.5 Root is a Ram Disk Image
If the root is set to be a ram file system, the init program creates a tmpfs (Linux* ram disk
file system type) in Intel® Xeon Phi™ coprocessor memory. It then copies all the files from
the initial ram disk image into the new tmpfs mount.

If any RPM files exist in the /RPMS-to-install directory, they will be installed. After
installation this directory is removed to free disk space.

The ram disk image is activated as the root device by calling the Linux* switch_root utility.
This special utility instructs the Linux* kernel to remount the root device on the tmpfs
mount directory, release all file system memory references to the old initial ram disk and
start executing the new /sbin/init function.

/sbin/init performs the normal Linux* user level initialization. All the information
required must have already been in the compressed cpio file.

13.1.6 Root is an NFS Export
If an NFS mount is indicated to supply the root device, the init program will initialize the
micN virtual network interface to the IP address supplied on the kernel command line and
mount the NFS export from the host.

As in the ram disk image, the NFS mount is activated as the root device by calling the
Linux* switch_root utility. This special utility instructs the Linux* kernel to remount the
root device on the NFS mount directory, release all file system memory references to the
old initial ram disk and start executing the new /sbin/init function.

(Intel® MPSS)

66 Document Number: 330076-001US

/sbin/init performs the normal Linux* user level initialization. All the information
required must have already been in the NFS export.

13.1.7 Notify the Host that the Intel® Xeon Phi™ Coprocessor
System is Ready
The last step of any of the three initializations is to notify the host that the coprocessor is

ready for access. It does this by writing to its /sys/class/micnotify/notify/host_notified

entry. This causes an interrupt into the host driver which updates the card’s state to

online.

Configuration

User's Guide 67

14 Configuration
This section focuses on configuring Intel® Xeon Phi™ coprocessors, including configuration
files, kernel command line parameters, and authentication.

14.1 Configurable Components
On a typical Linux* system, the installation and configuration process is performed as a
series of questions posed by the system and answered by the installer/operator. Since the
Intel® Xeon Phi™ coprocessors do not have a file system of their own, this process is
replaced by the installation of RPMs containing the required software on the host and
then configured by a combination of editing of configuration files and using the micctrl
utility. In most cases, direct editing of the configuration files has been deprecated in favor
of using the micctrl command directly.

The configuration parameters have three categories:

1) Parameters that control loading the Intel® Xeon Phi™ coprocessor Linux* kernel
onto the card and initiating the boot process.

2) Parameters to define the root file system to be used on the card.

3) Parameters to configure the host end of the virtual Ethernet connection.

The current configuration parameters can be displayed with the micctrl --config
command. For example, the default configuration on most systems looks like the
following:

micN:

===

 Linux Kernel: /usr/share/mpss/boot/bzImage-knightscorner
 BootOnStart: Enabled
 Shutdowntimeout: 300 seconds

 ExtraCommandLine: highres=off
 PowerManagement: cpufreq_on;corec6_off;pc3_on;pc6_on

 UserAuthentication: Local

 Root Device: Dynamic Ram Filesystem /var/mpss/micN.image.gz from:
 Base: CPIO /usr/share/mpss/boot/mpss-image-minimal-knightscorner.cpio.gz
 CommonDir: /var/mpss/common
 MicDir: /var/mpss/micN

 Network: Static Pair
 Hostname: eagles-micN.music.local
 MIC IP: 172.31.1.1

(Intel® MPSS)

68 Document Number: 330076-001US

 Host IP: 172.31.1.254
 Net Bits: 24
 NetMask: 255.255.255.0
 MtuSize: 64512
 MIC MAC: 4c:79:ba:1e:01:4a
 Host MAC: 4c:79:ba:1e:01:4b

 Console: hvc0
 VerboseLogging: Disabled
 CrashDump: /var/crash/mic 16GB

14.2 Configuration Files
This section briefly discusses configuration file formats and use of the Include parameter
to micctrl.

14.2.1 Configuration File Location
Configuration is controlled by per card configuration files located, by default, in the
/etc/mpss directory. Each card has an associated micN.conf configuration file, where N is
the integer ID of the particular coprocessor it defines (i.e., micN.conf, micN.conf, etc.).

System administrators may wish to maintain more than one set of configuration
information for the coprocessors in their systems. Configurations may be switched by
specifying different configuration files. The location of any set of configuration files may
be specified in the special configuration file /etc/sysconfig/mpss.conf. The top level
directory to be used for the configuration files (instead of /etc/mpss) is indicated by
adding a line with the format MPSS_CONFIGDIR=<new location>. The updated location is
honored by both the mpssd daemon and the micctrl utility.

The configuration directory may also be specified with micctrl --configdir. For example,
the system administrator may have four different configurations for the coprocessors
based on which user will be using the card. To accomplish this, the administrator creates
the directories /micuser/john, /micuser/paul, /micuser/george and /micuser/ringo,
corresponding to each of the four users.

[host]# mkdir –p /micuser/john /micuser/paul \ /micuser/george

/micuser/ringo

In each of these directories, the subdirectories config and var are added (examples not
shown). To configure the system, the administrator first creates the four configurations:

[host]# micctrl --configdir=/micuser/john/config \

--initdefaults

[host]# micctrl --configdir=/micuser/paul/config \

--initdefaults

[host]# micctrl --configdir=/micuser/george/config \

Configuration

User's Guide 69

--initdefaults

[host]# micctrl --configdir=/micuser/ringo/config \

--initdefaults

Next, the administrator differentiates the file system information for each of the users
with the micctrl --micdir and --commondir options, and copies files to the file system
parts as required for each user. Since each user has a unique configuration, the system
administrator must switch configurations as required. Using a text editor, the system
administrator creates or edits the /etc/sysconfig/mpss.conf file. For example, to specify
Paul as the user, the mpss.conf file would contain:

MPSS_CONFIGDIR=/micusers/paul/config

Then, the system administrator must perform a “1service mpss restart” to restart mpssd
with the new configuration location.

14.2.2 Configuration File Format
Each of the per card configuration files contains a list of configuration parameters and
their arguments. Each parameter must be on a single line. Comments begin with the ‘#’
character, and terminate at the end of the same line.

14.2.3 Configuration Version
Parameter Syntax:

Version <major number> <minor number>

The Version parameter sets the coprocessor configuration file version. As new releases
are produced, the version is used by the micctrl --initdefaults command to identify where
to update configuration files. This parameter should not be manually edited.

14.2.4 Including Other Configuration Files
Parameter Syntax:

Include <config_file_name>

Each configuration file can include other configuration files. The Include parameter lists
the configuration file(s) to be included. The configuration file(s) to be included must be
found in etc/mpss. The configuration parser processes each parameter sequentially.
When the Include parameter is encountered, the included configuration file(s) are
immediately processed. If a parameter is set multiple times, the last instance of the
parameter setting will be applied.

By default, the /etc/mpss/default.conf file is included at the start of each coprocessor
specific file (e.g. micN.conf, micN.conf, etc.). This allows the coprocessor specific files to
override any parameter set in default.conf.

(Intel® MPSS)

70 Document Number: 330076-001US

The second entry in the mic<ID>.conf files is typically (and by default) the line:

Include conf.d/*.conf

This is a special rule, specifying that all the files in the /etc/mpss/conf.d directory will be
included. Including both files at the top allows the card specific configuration file to
override any common values that were specified.

14.3 Configuring Boot Parameters
The host system boots the Intel® Xeon Phi™ coprocessor by injecting the Linux* kernel
image and kernel command line into coprocessor memory and then instructing the
coprocessor to start. To perform this operation, the host system reads the configuration
files, and builds the kernel command line from relevant parameters. By default, the boot
parameters are placed in the per-card micN.conf files, allowing each card to be configured
independently of the other cards. If a boot parameter is placed in the defaults.conf file,
then it will apply to all cards unless overridden

14.3.1 What to Boot
Parameter Syntax:

OSimage <linux_kernel_image> <system_address_map_file>

The OSimage parameter specifies the Intel® Xeon Phi™ coprocessor Linux* OS boot image
and its associated system address map file. The default values are
/usr/share/mpss/boot/bzImage-knightscorner and /usr/share/mpss/boot/System.map-
knightscorner.

The system owner can specify a different kernel image by using the micctrl --osimage
command or by editing this parameter.

The change takes effect upon executing either 1service mpss start or micctrl -b.

When to Boot

Parameter Syntax:

BootOnStart <Enabled | Disabled>

The BootOnStart parameter controls whether the Intel® Xeon Phi™

coprocessor is booted when the Intel MPSS service starts. If

set to Enabled, the mpssd daemon will attempt to boot the Intel®

Xeon Phi™ coprocessor when 1service mpss start is called.

BootOnStart may be changed using the micctrl --autoboot command.

14.3.2 VerboseLogging Kernel Command Line Parameter
Parameter Syntax:

Configuration

User's Guide 71

VerboseLogging <Enabled | Disabled>

The VerboseLogging parameter specifies whether the quiet kernel command line
parameter is passed to the Intel® Xeon Phi™ coprocessor on boot. The quiet kernel
parameter suppresses most kernel messages during kernel boot. VerboseLogging is
disabled by default. Enabling VerboseLogging will increase boot times.

Changes to VerboseLogging take effect upon executing 1service mpss start or micctrl -b.

NOTE: This parameter may be deprecated in future releases.

14.3.3 Console Kernel Command Line Parameter
Parameter Syntax:

Console “<console device>”

Intel MPSS software provides a PCIe bus virtual console driver. Its device node (hvc0) is
the default value assigned to the Console parameter. Other possible values are intended
for internal use.

Changes to Console take effect upon executing 1service mpss start.

14.3.4 ExtraCommandLine Kernel Command Line Parameter
Parameter Syntax:

ExtraCommandLine “<string>”

The ExtraCommandLine parameter specifies kernel command line parameters to pass to
the Intel® Xeon Phi™ coprocessor kernel on boot. Drivers for the coprocessor use a
number of kernel command line parameters generated by the host driver. Default
parameters may be subject to change in future releases.

CAUTION: Exercise caution when editing this parameter.

Changes to ExtraCommandLine take effect upon executing 1service mpss start or
micctrl -b.

(Intel® MPSS)

72 Document Number: 330076-001US

14.3.5 PowerManagement Kernel Command Line Parameter
Parameter Syntax:

PowerManagement

“cpufreq_<on|off>;corec6_<on|off>:pc3_<on|off>:pc6_<on|off>”

The PowerManagement parameter is a string of four attributes passed directly to the
kernel command line for the card’s power management driver. The mpssd daemon and
micctrl utility do not validate any of the parameters in this string or its format. Consult
power management documentation for correct values.

Changes to power management parameters may be specified using the micctrl --pm
command.

Changes to PowerManagement take effect upon executing 1service mpss start or micctrl
-b.

14.3.6 ShutdownTimeout Parameter
Parameter Syntax:

ShutdownTimeout [value]

Setting value to a positive integer specifies the maximum number of seconds to wait for
the card to shut down. If shut down time exceeds the value it is reset.

Setting value to any negative value indicates to wait indefinitely for the card to shut
down.

Setting value to zero indicates to simply reset the card without waiting for it to shut
down.

The default value for shutdown is set to 300 seconds by the micctrl --initdefaults
command. Changing the value requires a restart of the mpss service to activate it.

14.3.7 CrashDump Parameter
Parameter Syntax:

CrashDump <dirname> <limit>

The CrashDump parameter specifies the directory in which to place coprocessor crash
dump files and the maximum size of the files to create. The micctrl --initdefaults
command sets defaults to the directory /var/crash/mpss and a maximum size of 16
gigabytes.

14.3.8 Cgroup Parameter
Parameter Syntax:

Cgroup [memory=<disabled|enabled>]

Configuration

User's Guide 73

The Cgroup parameter implementation is currently limited to specifying the status of
enabling the memory cgroup category. Cgroup memory support in the Linux* kernel adds
significant overhead. In most cases, customers will want leave it disabled. The default
value created by the micctrl --initdefaults command is to set the functionality to disabled.
Cgroup’s memory support may be enabled by editing the configuration file and changing
the parameter or using the micctrl --cgroup command. In either case the functionality
will be enabled on the next boot of the associated coprocessor.

14.3.9 RootDevice Kernel Command Line Parameter
Parameter Syntax:

RootDevice <type> [<location> [</usr location>]]

The RootDevice parameter defines the type of root device to mount. The type argument
is a string specifying the device type. The location argument is the location information of
the file system for the Intel® Xeon Phi™ coprocessor.

Current supported types are RamFS, StaticRamFS, NFS, and SplitNFS.

The RamFS type builds a compressed cpio ram disk image when a request to boot is
received. The file created is specified by the location parameter. The image is used as
the contents to be loaded into the root tmpfs file system.

The StaticRamFS type causes the compressed cpio image at location to be used as the
contents of the root file system for the booting coprocessor. The StaticRamFS boot will
fail if the image file is not already present at location.

The static ramfs image may have been previously created by booting with RootDevice set
to RamFS. Optionally, when RootDevice is StaticRamFS, the micctrl --updateramfs
command causes a compressed cpio image to be built and placed at the location
argument to StaticRamFS. System administrators may also supply their own initial ram
disk image.

The NFS type instructs the booting coprocessor to mount the NFS share specified by the
location argument as the root file system. The location must be a fully qualified NFS
mount location with the format “server:location”. For example it may look like
10.10.10.12:/export/micN or host:/var/mpss/micN.export.

The SplitNFS type is the same as NFS except it also provides a separate NFS share at /usr
location to mount as the /usr directory on the card.

The effects of changes to RootDev take effect upon executing 1service mpss start or
micctrl -b.

For more information, refer to Section 16.1, “The File System Creation Process”.

(Intel® MPSS)

74 Document Number: 330076-001US

14.4 Root File System
Every Linux* system needs a root file system with a minimal set of files. Other
nonessential files may be on the root or they may be on secondary mounts. Most modern
Linux* OS releases assume the root file system will be large enough to install the
complete release into. The Intel® Xeon Phi™ coprocessor embedded file system currently
follows the same rule.

Files on the root fall into three categories: the binaries installed with the system, the files
in the /etc directory, which are used for configuring parameters uniquely to an individual
system, and the set of files for the users of the system.

Intel MPSS provides a set of configuration parameters that are used in building the root
file system image. When a root file system image is (re)built it is controlled by the
RootDevice parameter. Refer to Section 14.3, “Configuring Boot Parameters” and Section
16.1, “The File System Creation Process” for more information.

14.4.1 File Location Parameters
The mpssd daemon and micctrl command require the location of the files to be placed in
the final root disk image to be used on the card. The files are located using the four
configuration parameters Base, CommonDir, Overlay, and MicDir. Of the four, the
Overlay parameter is the only one allowed to be specified multiple times.

Parameter Syntax:

Base <type> <target>

The Base parameter specifies most of the standard binaries for the Intel® Xeon Phi™
coprocessor. The type argument must be set to CPIO or DIR. The default is CPIO and the
location argument is set to the /usr/share/mpss/boot/initramfs-knightscorner.cpio.gz file
installed from the Intel MPSS RPMs.

Setting the Base parameter to DIR requires the location argument to be set to the
directory where the CPIO file has been expanded. Use the micctrl --base command to
help create the new directory. Once the CPIO file has been expanded, the system
administrator may update the files as desired.

Changes to the Base parameter take effect the next time the Intel® Xeon Phi™
coprocessor is booted.

Parameter Syntax:

CommonDir <source> <target>

The CommonDir parameter defines a set of files that the system administrator wishes to
have on all the Intel® Xeon Phi™ coprocessor file systems. There are no files installed in
this directory by default, and added files will be maintained between updates to the Intel
MPSS installation.

Configuration

User's Guide 75

The source argument is the directory containing the files to be

placed in the card’s file system. The target argument is a list

of the files with information on type, ownership, and

permissions. The use of the target parameter has been

deprecated. New configuration files generated with the micctrl -

-initdefaults command will not include it. If the micctrl --

resetdefaults command is executed the target argument will be

removed.

Parameter Syntax:

Overlay <type> <source> <target> <on|off>

The Overlay parameter is the only one of the set that can be used multiple times. Each
time it is listed, it may specify an additional set of files to add to the file system. This
parameter is used to add additional software to be automatically included.

There are four types of overlays and are specified by the string FileList, Simple, File, and
RPM.

Setting the type argument to FileList places files from the directory source onto the ram
file system image based on specifications in the target file. As in the CommonDir
parameter, the source argument defines the directory containing the files to be placed on
the card’s file system, and the target file contains the descriptors.

Setting the type argument to Simple specifies to copy all files found under the directory
source into the directory target in the card’s file system with owner and permission
matching the files on the host.

Setting the type argument to File specifies to copy the single file source to target in the
card’s file system.

Setting the type argument to RPM specifies placing the single Knight’s Corner RPM file
source or all the Knight’s Corner RPM files in the directory source in the /RPMs-to-install
directory on the Card’s file system. During boot of the card, the init program will attempt
to install any RPM so placed into the ram file system.

Parameter Syntax:

MicDir <location> <descriptor file>

These parameters collectively specify all the files from which a root file system cpio image
is to be built. Each parameter has two required arguments. The location parameter is a
host subdirectory. The descriptor file parameter identifies a file that describes where files
in the directory subtree at location are to be placed in the Intel® Xeon Phi™ coprocessor’s
file system, and the permissions of those files.

The use of the descriptor file parameter has been deprecated. New configuration files
generated with the micctrl --initdefaults command will not include it. If the
micctrl --resetdefaults command is executed the descriptor file argument will be
removed.

The MicDir parameter defines the per card information required to make the Intel® Xeon
Phi™ coprocessor unique. There are no files installed in this directory and most of its

(Intel® MPSS)

76 Document Number: 330076-001US

content is created by the configuration process (micctrl in particular). Specifically, user
access and network configuration each has its own set of configuration parameters.

14.4.2 Intel MPSS RPM Location
Parameter Syntax:

K1omRpms <location>

The file system format for the Intel MPSS Linux* release is based on and includes the
control files to install RPM formatted installation files. Some micctrl options require the
location of k1om type Intel MPSS RPM files.

The KlomRpms parameter defines a location on the host file system where the Intel MPSS
RPMS (klom type) are to be found. The System Administrator must set this option and
ensure the RPM files actually exist at that location. The easiest way to set this parameter
is with the micctrl --rpmdir command.

The actual use of this parameter is very limited and it may be replaced with more useful
functionality in the future.

14.4.3 User Access
Parameter Syntax:

UserAuthentication None

UserAuthentication Local <low uid> <high uid>

The UserAuthentication parameter has been removed. Refer to the sections on micctrl
specificiation of users for the cards for configuration user access.

14.4.4 Service Startup

NOTE: This section is still functional but there are no longer default services using it. It may be

fully depricated and removed in the future.

During boot, the embedded Linux* OS on the Intel® Xeon Phi™ coprocessor executes the
script files in the /etc/rc5.d directory. These entries are links to the actual script files in
the /etc/init.d directory. The links are named with the standard Linux* custom starting
with an ‘S’ for start or ‘K’ for stop followed by the position parameter and then the file
name from the init.d directory. The position parameter is a number from 01 to 99
establishing the order in which the scripts are executed.

Service <name> <start> <stop> <state>

The Intel MPSS stack installs several pieces of software with various service scripts. The
system administration may not want all of them to start at boot. To support this
functionality, the configuration files specify the creation of the files in /etc/rc5.d based on

Configuration

User's Guide 77

the Service configuration parameter. Each file in /etc/init.d will require a Service entry in
an Intel® Xeon Phi™ coprocessor configuration file.

The name argument is the name of the actual script found in the /etc/init.d directory.

The start argument defines the order the service start relevant to other scripts. It will be
a value from 1 to 99. As an example the network interface must be initialized before the
secure shell daemon can be started. The network script is assigned a start value of 21
and sshd is assigned 80.

The stop argument is the opposite of the start parameter and is generally set to 100
minus the start value. This will assure on shutdown the secure shell daemon at 5 will shut
down before the network is unconfigured at 79.

The state argument determines whether the links specifies an ‘S’ for start or ‘K’ for stop.
It follows the chkconfig utility convention of on for start and off for stop.

14.4.5 Network Access
Network access to the Intel® Xeon Phi™ coprocessors is a complicated process depending
on the network topology to support. The supported coprocessor topologies have been
categorized into static pair, internal bridge and external bridge topologies. Using a
combination of the Bridge and Network configuration parameters allows a diverse and
robust network setup.

Each Linux* system in a network uses a host name to identify itself. The Hostname
parameter is used to configure it.

Each network interface is identified by its MAC address. The virtual network devices
between the host and card needs its own address. These addresses are configured using
the MacAddrs parameter.

On the host operating system, files are added to the network configuration based on the
host OS type (Red Hat* or SUSE*). On the card file systems the files added are:

/etc/network/interfaces

/etc/hostname

/etc/ssh/ssh_host_key

/etc/ssh/ssh_host_key.pub

/etc/ssh/ssh_host_rsa_key

/etc/ssh/ssh_host_rsa_key.pub

/etc/ssh/ssh_host_dsa_key

/etc/ssh/ssh_host_dsa_key.pub

/etc/ssh/ssh_host_ecdsa_key # if present

/etc/ssh/ssh_host_ecdsa_key.pub # if present

/etc/resolv.conf

(Intel® MPSS)

78 Document Number: 330076-001US

/etc/nsswitch.conf

/etc/hosts

All network configuration parameters take effect upon executing 1service mpss start.

14.4.5.1 Host Name Assignment

Parameter Syntax:

 Hostname <name>

The Hostname parameter defines the value assigned to the host

name on the Intel® Xeon Phi™ coprocessor. The initial value

from the micctrl --initdefaults command is set to the hostname

with a dash and the card name appended to it. The host name

string may be edited in the card specific configuration.

14.4.5.2 MAC Address Assignment

Configuring the virtual network interface between Intel® Xeon Phi™ coprocessors and the
host is a non-trivial process and differs based on the required topology. However, as a
prerequisite, both ends of the virtual network need to have MAC addresses assigned.

MacAddrs Serial

MacAddrs Random

 MacAddrs <host MAC>:<card MAC>

The current driver associated with the Intel MPSS release creates MAC addresses based
on the serial number of the Intel® Xeon Phi™ coprocessor. If the card is an older version
with an invalid serial number, it will randomly assign the MAC address.

The system administrator may override the default created by the driver with the
MacAddrs configuration parameter. The micctrl --mac command can be used to set this
parameter.

Both the driver and micctrl will create MAC addresses where the lower bit being set
indicates the host side of the virtual network connection.

The current driver also by default assigns address starting with an IEEE assigned 4C:97:BA
to easily identify the Intel® Xeon Phi™ coprocessor interfaces.

14.4.5.3 Static Pair (Default) Topology

Parameter Syntax:

Network class=StaticPair \

micip=<cardIP> hostip=<hostIP> \

mtu=<mtu size> netbits=<netbits> \

modhost=<yes|no> modcard=<yes|no>

In the static pair topology, every Intel® Xeon Phi™ coprocessor is assigned to a separate
subnet known only to the host.

Configuration

User's Guide 79

The IP address for the Intel® Xeon Phi™ coprocessor and host ends of the virtual network
connection must be a fully qualified IP address and the first three quads of the addresses
must match. The micctrl --initdefaults or micctrl --resetconfig commands assign a default
value to the top two quads of “172.31”. The third quad indicates the card number. The
Intel® Xeon Phi™ coprocessor end of the virtual connection is assigned “1” for the last
quad and the host end is assigned “254”. For example, the host end of the micN card will
have the IP address “172.31.1.254” and the card end will be assigned the IP address
“172.31.1.1”.

The netbits argument specifies the prefix parameter to be used to formulate the
NETMASK to assign to the interface. For a static pair configuration it should never be
necessary to change this parameter.

The mtu parameter will specify the packet size to use over the virtual network
connection. The default value of 64k has been shown to provide the highest network
performance.

It is up to the system administrator to correctly route the virtual Ethernet nodes to the
external network or each other.

The modhost parameter determines whether the system administrator wants to modify
the host /etc/hosts file. The modcard parameter determines whether the system
administrator wants the configuration process to create the /etc/hosts on the card. Using
either will override the use of the old deprecated hosts parameter. The hosts parameter
may still be used and setting it will be treated as setting modhost and modcard with the
specified parameter.

NOTE: Setting --modhost=no will remove any pre-existing /etc/hosts entries that contain the

comment "#Generated-by-micctrl".

The static pair network configuration can be changed by editing a card’s configuration file
Network parameter. The recommended method of changing the Network parameter is to
use the micctrl --network command (see the micctrl section of this document). The --
network method explicitly knows the previous configuration and can remove it before
creating the new one. In either case, all of the network control files will be created when
the operation is done.

14.4.5.4 Internal Bridge Topology

Parameter Syntax:

Bridge [name] Internal [IP] [netbits] <mtu>

Network class=StaticBridge bridge=<name> \

micip=<cardIP> modhost=<yes/no> modcard=<yes/no>

Linux* provides a mechanism for bridging network devices to a common network. The
terminology “internal bridge”, in the context of Intel® Xeon Phi™ coprocessor
configuration, refers to the process of bridging together multiple Intel® Xeon Phi™
coprocessor virtual network interfaces, on the same host.

(Intel® MPSS)

80 Document Number: 330076-001US

Internal bridge configuration is specified by adding a Bridge parameter to the default.conf
file to specify the bridge information, and then changing the Network parameter to point
to it.

The first argument to the Bridge parameter specifies the name of the bridge and will be
used to create the host bridge configuration file. The same name will be used in the
Network parameter to identify the bridge it will be added to.

The IP address must be set to a fully qualified address.

The NetBits parameter is set to 24 by default and will rarely need to be changed.

The Optional MTU parameter sets the packet size used over the virtual Ethernet. The
driver uses a default size of 64k if this value does not change. Testing has shown this to
be the optimal size for the virtual network.

Each Intel® Xeon Phi™ coprocessor’s configuration must contain a Network entry pointing
to the added bridge.

The bridge argument must match the name of a bridge specified with a Bridge parameter.

The modhost parameter determines if the system administrator wants to modify the host
/etc/hosts file or not. The modcard determines if the system administrator wants the
configuration process to create the /etc/hosts on the card. Using either will override the
use of the old deprecated hosts parameter. The hosts parameter may still be used and
setting it will be treated as setting modhost and modcard with the specified parameter.

NOTE: Setting --modhost=no will remove any pre-existing /etc/hosts entries that contain the

comment "#Generated-by-micctrl".

The resulting configuration files will use the bridge configuration for the MTU and NetBits
to ensure they match.

The internal bridge network configuration can be changed by editing a card’s
configuration file Network parameter. The recommended method of changing the
Network parameter is to use the micctrl --network command (see the micctrl section of
this document). The
--network method explicitly knows the previous configuration and can remove it before
creating the new one. In either case, all the network control files will be created when
the operation is done.

14.4.5.5 External Bridge Topology

Parameter Syntax:

Bridge [name] External [IP] [netbits] [MTU]

Network class=StaticBridge bridge=<name> \

<micip=<cardIP> modhost=<yes/no> modcard=<yes/no>>

 Network class=Bridge bridge=<name>

The Linux* bridging mechanism can also bridge the Intel® Xeon Phi™ coprocessor virtual
connections to a physical Ethernet device. In this topology, the virtual network interfaces

Configuration

User's Guide 81

become configurable to the wider subnet. The Intel® Xeon Phi™ coprocessor
configuration must become aware of the network bridge before virtual network interface
can be attached to it.

The Bridge configuration parameter with the type argument set to External creates this
mapping. If the corresponding bridge networking configuration file (ex: ifcfg-br0) does
not exist then configuring this parameter will cause it to be generated. It will not
generate the physical interface file to attach it to the physical network. The system
administrator will need to perform this step. For example, on Red Hat*, a file to link the
eth0 interface to the bridge would be /etc/sysconfig/network-scripts/ifcfg-eth0:

DEVICE=eth0

NM_CONTROLLED=no

TYPE=Ethernet

ONBOOT=yes

BRIDGE=br0

On SUSE* releases, the physical port name will also need to be added to the
BRIDGE_PORTS entry in the bridge configuration file.

The rest of the arguments to the Bridge configuration parameter are the same as the
internal bridge configuration with exception of MTU size. The default value is set to 1500
bytes to match default physical network settings. If attaching to a pre-existing external
bridge configuration the system admin must ensure these settings match the setting in
the system configuration file. For example, on Red Hat* if the /etc/sysconfig/network-
scripts/ifcfg-br0 file contains the line “MTU=9000” then the MTU field must be set to
9000 to match.

If attaching to a bridge that is a DHCP configuration, then set the IP value to the string
“dhcp”.

Like the internal method, the Network parameter connects a virtual network interface to
the defined bridge.

If the Network parameter specifies a type of StaticBridge, the micip argument is required
and, along with the modhost, and modcard parameters works the same as the
StaticBridge configuration.

NOTE: Setting --modhost=no will remove any pre-existing /etc/hosts entries that contain the

comment "#Generated-by-micctrl".

If the Network parameter specifies a type of Bridge then the cards network files are
created using DHCP to retrieve the correct IP address for the card. The modhost and
modcard parameters are not required because it is assumed the IP address for each card
will be retrievable from a name server on the net.

14.4.5.6 Host SSH Keys

The secure shell utilities recognize a Linux* system on the network by its “host key files”.
These files are found in the /etc/ssh directory. The host key values, like the MAC

(Intel® MPSS)

82 Document Number: 330076-001US

addresses, are considered to be highly persistent, and the micctrl command will retain
their values if they exist.

In some clusters, detecting and protecting against “man in the middle” and other such
attacks might not be required. In this case, the system administrator may use the micctrl
--hostkeys command to set the host SSH keys to be the same, cluster wide.

14.4.5.7 Name Resolution Configuration

Name resolution on the card is set by creating the /etc/nsswitch file and copying the
/etc/resolv.conf file from the host to the Intel® Xeon Phi™ coprocessor file system.

The micctrl Utility

User's Guide 83

15 The micctrl Utility
The micctrl utility is a multi-purpose toolbox for the system administrator. It provides
these categories of functionality.

 Card state control – boot, shutdown and reset control while the mpssd daemon is
running.

 Configuration files initialization and propagation of values.

 Helper functions for modifying configuration parameters.

 Helper functions for modifying the root file system directory or associated download
image.

The micctrl utility requires a first argument specifying the action to perform, followed by
option-specific arguments. The arguments may be followed by a list of Intel® Xeon Phi™
coprocessor names, which is shown in the syntax statements as [mic card list]. If no cards
are specified, the mic.ko driver must be loaded and the existing card list is probed.
Otherwise, the card will be a list of the card names. For example, the list may be “micN
micN”, if these are the cards to control.

NOTE: The mic.ko driver module must be loaded before using the micctrl utility.

15.1 Card State Control
Starting the mpssd daemon may initiate booting of the Intel® Xeon Phi™ coprocessors.
On a system with multiple cards it would be intrusive to shut down and restart the
daemon to reboot one of the cards. It would force all of them to be rebooted. Therefore,
the micctrl utility provides mechanisms for individual card control.

Micctrl controls Intel® Xeon Phi™ coprocessor state and queries card state via the sysfs
entry /sys/class/mic/<micname>/state. The micname value is literally the name of the
coprocessor and will be in the format micN, micN, etc.

Reading from the state will show the current run state of the corresponding Intel® Xeon
Phi™ coprocessor. Writing to the state may cause the corresponding card to change
states, and is restricted to the root user.

15.1.1 Waiting for Intel® Xeon Phi™ Coprocessor State Change
Command Syntax:

micctrl -w [mic card list]

micctrl --wait [mic card list]

(Intel® MPSS)

84 Document Number: 330076-001US

The wait (or w) option waits for the status of the Intel® Xeon Phi™ coprocessor to be
either “online” or “ready”. It also allows for a brief pause to the “ready” state during
mpssd startup. It is intended for users to verify the mpssd daemon startup, shutdown, or
reset procedure is complete. It has a built-in timeout value of 300 seconds.

15.1.2 Booting Intel® Xeon Phi™ Coprocessors
Command Syntax:

micctrl -b [-w] [mic card list]

micctrl --boot [-w] [mic card list]

The Intel® Xeon Phi™ coprocessor(s) must be in the “ready” state. This command writes
the string “boot:linux:<image>” (where image is the OSimage configuration parameter) to
the /sys/class/mic/<micname>/state sysfs file. The driver will inject the indicated Linux*
image into the cards memory and start it booting.

15.1.3 Shutting Down Intel® Xeon Phi™ Coprocessors
Command Syntax:

micctrl -S [-w] [mic card list]

micctrl --shutdown [-w] [mic card list]

The Intel® Xeon Phi™ coprocessor must be in the “online” state. This command writes the
string “shutdown” to the /sys/class/mic/<micname>/state sysfs file. The driver instructs
the card to perform an orderly shutdown and wait for completion. It will then reset the
card to place it again in the boot ready state.

15.1.4 Rebooting Intel® Xeon Phi™ Coprocessors
Command Syntax:

micctrl -R [-w] [mic card list]

micctrl --reboot [-w] [mic card list]

The Intel® Xeon Phi™ coprocessor must be in the “online” state. This command
sequentially performs the shutdown and boot functions described in Sections 15.1.2 and
15.1.3.

15.1.5 Resetting Intel® Xeon Phi™ Coprocessors
Command Syntax:

micctrl -r [-w] [mic card list]

micctrl --reset [-w] [mic card list]

The micctrl Utility

User's Guide 85

The Intel® Xeon Phi™ coprocessor can be in any state. This command writes the string
“reset” to the /sys/class/mic/<micname>/state sysfs file. The driver will perform a soft
reset on the card by setting the correct card PCI mapped register.

NOTE: Performing a reset may result in the loss of file data that has not been flushed to a remote
file. It is therefore recommended to perform a shutdown where possible instead of a
reset.

15.1.6 Intel® Xeon Phi™ Coprocessor Status
Command Syntax:

micctrl -s [mic card list]

micctrl --status [mic card list]

The status option displays the status of the Intel® Xeon Phi™ coprocessors in the system.
It the status is “online” or “booting” it also displays the name of the associated boot
image.

15.2 Configuration Initialization and Propagation
This section discusses the micctrl command options for initializing configuration files, and
propagating, resetting, and cleaning configuration parameters.

15.2.1 Initializing the Configuration Files
Command Syntax:

micctrl --initdefaults \

[--users=<none | overlay | merge | nochange] \

[--pass=<none | shadow>] [--nocreate] \

[--modhost=<yes | no>] [--modcard=<yes | no>] \

[mic card list]

The Intel MPSS installation does not provide configuration files described earlier in
Configuration. Instead, these files are created by the micctrl --initdefaults command.
micctrl --initdefaults can be run anytime but will not change files if they already exist and
have valid information.

The --initdefaults option first checks to see if the /etc/mpss/default.conf file is present. If
not, it creates the default version of it. Then, for each supplied card, it checks for the
existence of the card-specific configuration file /etc/mpss/<micname>.conf. If it is not
present, it creates a default version with an Include parameter including the default.conf
file.

(Intel® MPSS)

86 Document Number: 330076-001US

The --initdefaults option then proceeds to parse the per card configuration files. For each
parameter that is not set, it will add a default value to the per card configuration file. At
the same time it will check for deprecated parameters and transform them to the
updated parameters. For example: the deprecated FileSystem parameter is updated to
RootDevice RamFS.

The --initdefaults option also added the following options in the 3.2 release:

With the elimination of the UserAuthentication parameter initdefaults needs some
guidance on users to add to the /etc/passwd file. If no --users argument is specified then
it defaults to the nochange.

If --users is set to nochange and if no /etc/passwd exists then it defaults to the
functionality of setting overlay. Otherwise no changes to the /etc/passwd file will occur.

 If --users is set to none then only the minimal set of users including root, sshd, micuser,
nobody and nfsnobody.

If --users is set to overlay then the information in /etc/passwd and /etc/shadow will be
replace with the minimal users plus all users in the host’s /etc/passwd file.

If --users is set to merge then the host’s /etc/passwd file will be checked for any users
not in the cards file and added in.

The --pass argument allows the system administrator to decide whether the pass word for
the user from the host will be copied to the card or not. If it is set to none then the pass
word field in the /etc/shadow file will be filed with a ‘*’. If it is set to shadow then the
hosts pass word information for the user on the host will be used. It should be noted this
does not apply to SUSE* hosts using the default Blowfish encryption since the card will
not understand it.

The --nocreate argument specified to not create the associated home directory for the
user. This is intended to be used by systems where the users home directory will be
remote mounted.

Setting the --modhost parameter indicates to micctrl whether to add an entry for the
Intel® Xeon Phi™ coprocessor IP address to the host’s /etc/hosts file. If modhost=yes,
then micctrl will modify the /etc/hosts file; if modhost=no, then the system administrator
should add the entry to the /etc/hosts file.

The --modcard parameter determines whether the system administrator wants the
configuration process to create the /etc/hosts file on the card. if modcard=no, then the
system administrator should create the /etc/hosts file on the card.

Consult the documentation for setting network functons for the results of using the
--modhost and --modcard options.

15.2.2 Propagating Changed Configuration Parameters
Command Syntax:

micctrl --resetconfig \

The micctrl Utility

User's Guide 87

[--users=<none | overlay | merge | nochange] \

[--pass=<none | shadow>] [--nocreate] \

[--modhost=<yes | no>] [--modcard=<yes | no>] \

[mic card list]

Changes to the configuration files are propagated with the micctrl --resetconfig
command. The --resetconfig option first removes the files in MicDir created by the
configuration process, with the exception of the highly persistent ssh host key files. It
then regenerates those files according to the parameters in the
/etc/mpss/<micname>.conf and /etc/mpss/default.conf files. This process will not add
default parameters, but only causes the changed parameters to be propagated.

The --resetconfig option added several new options with the 3.2 release. Consult the
previous documentation for the --initdefaults option.

NOTE: This command is deprecated, and may be removed in future releases.

15.2.3 Resetting Configuration Parameters
Command Syntax:

micctrl --resetdefaults \

[--users=<none | overlay | merge | nochange] \

[--pass=<none | shadow>] [--nocreate] \

[--modhost=<yes | no>] [--modcard=<yes | no>] \

[mic card list]

In the event of a failed or problematic configuration process, the best remedy may be to
start again. The micctrl --resetdefaults command deletes the configuration files and
executes the same process as the --initdefaults option.

Since --resetdefaults only affects the files known to the configuration, it does not delete
any files the system administrator has added to a card’s file system.

The --resetdefaults option has a number of new options with the 3.2 release. Consult the
previous documentation for the --initdefaults option.

15.2.4 Cleaning Configuration Parameters
Command Syntax:

micctrl --cleanconfig [mic card list]

Since Intel MPSS configuration commands will replace configuration parameters that have
been deprecated, the micctrl --resetdefaults and micctrl --resetconfig commands may

(Intel® MPSS)

88 Document Number: 330076-001US

not restore the deprecated commands of some previous version of Intel MPSS. Recalling
the earlier example in Section 15.2.1, “Initializing the Configuration Files”, the
micctrl --resetdefaults and micctrl --resetconfig commands will not automatically revert
"RootDevice RamFS” back to the “FileSystem” parameter. If this is the desired goal, then
removing the whole card configuration may be required.

The --cleanconfig option not only removes a card’s configuration files, but also removes
all files in the MicDir parameter directory along with the other values specified by
RootDevice.

15.3 Helper Functions for Configuration Parameters

15.3.1 Change the Host Networking Configuration Daemon

Warning: Configuring the virtual network interfaces for the Intel® Xeon Phi™ coprocessors has

displayed a number of irregularities in both the Red Hat* and SUSE* implementations of

“NetworkManager”, due to assumptions they make about non-hardwired network

interfaces. It is now required to use the older and more server-oriented “network”

daemon instead. To switch to network daemon, perform the following on the host:

For RedHat6.x and SuSE:

[host]# service NetworkManager stop

[host]# chkconfig NetworkManager off

[host]# chkconfig network on

For RedHat Linux 7.x:

[host]# systemctl stop NetworkManager

[host]# systemctl disable NetworkManager

[host]# systemctl enable network

15.3.1.1 MAC Address Assignment

Command Syntax:

micctrl --mac=serial

micctrl --mac=random

micctrl --mac=<MAC address>

The --mac option allows the system administrator to set the value of the MacAddrs

parameters. If the Intel® Xeon Phi™ coprocessor has a valid serial number then using the

--mac=serial option will tell the configuration to use the MAC address created from the

card’s serial number.

The micctrl Utility

User's Guide 89

Using the --mac=random option will configure the interface to use whatever address the

driver assigns.

The system administrator may set any valid MAC address in the format

XX:XX:XX:XX:XX:XX. This address will be assigned to the Intel® Xeon Phi™ coprocessor end

of virtual network interface and this number with the last segment incremented by one to

the host end of the virtual network.

15.3.1.2 Resetting to Default

Command Syntax:

micctrl --network=default [mic card list]

The --network option set to default restores the network setting for the list of

coprocessors to the value originally created by the micctrl --initdefaults command.

15.3.1.3 Static Pair

Command Syntax:

micctrl --network=static [--ip=<mic_IP>]\

[--mtu=<mic_mtu>]\

[--modhost=<yes|no>] [--modcard=<yes|no>] [mic card list]

NOTE: Throughout the rest of this section unless otherwise specified - IP in the Command

Syntax applies to the mic card and mtu applies to the network interface for the card.

The --network option set to static without specifying a bridge name provides an easy
method for changing the Network configuration parameter to a static pair type. If no IP
address is included, then the network interfaces for the listed cards is set to the default
values provided by the original micctrl --initdefaults command.

If the IP address specified is the first two quads, then micctrl will finish the address by
setting the third quad of each address to the card’s ID + 1, and the fourth quad to 1 on the
card and 254 on the host. For example, on a two card system specifying an IP value of
“10.10” will create micN values of “10.10.1.1” and “10.10.1.254” and micN values of
“10.10.2.1” and 10.10.2.254”.

It is possible to explicitly set the values assigned to the IP addresses. The IP argument
must be set with the format cardIP,hostIP:cardIP,hostIP…. Each cardIP - hostIP pair
specifies a card's values. For example, if there are two cards in the system and the entry
is “10.10.10.1,10.10.10.2:10.10.11.1,10.10.11.2” then micN will be assigned the card IP
address of 10.10.10.1 and host of 10.10.10.2. MicN will be assigned 10.10.11.1 and
10.10.11.2.

The default size of MTU is set to max IPV4 size of 64k. This value can be changed by
specifying the MTU value. This should only be used for performance testing since tests
have shown the default value to have the best performance.

(Intel® MPSS)

90 Document Number: 330076-001US

The modhost parameter determines if the system administrator wants to modify the host
/etc/hosts file or not. The modcard determines if the system administrator wants the
configuration process to create the /etc/hosts on the card. Using either will override the
use of the old deprecated hosts parameter. The hosts parameter may still be used and
setting it will be treated as setting modhost and modcard with the specified parameter.

15.3.1.4 Internal Bridging

Command Syntax:

micctrl --addbridge=<brname> --type=internal --ip=<bridge_ip>\

[--netbits=<bits>] [--mtu=<MTU>]

micctrl --network=static [--bridge=<bridge_name>] \

[--ip=<mic_IP>] [--mtu=<mic_mtu>][--modhost=<yes|no>]\

[--modcard=<yes|no>] [mic card list]

The internal bridging network topology connects the Intel® Xeon Phi™ coprocessors in a
system together with one IP address for the host. This is accomplished by first creating
the bridge interface on the host and then connecting the virtual network interfaces to it.

Micctrl creates bridge interfaces with the --addbridge option. The name of the bridge
must be specified and generally on Linux* is br0 or br1 . Setting the type to internal will
cause micctrl to always create the correct network configuration files for the host.

Like static pair, you may specify the netbits value and the mtu value but it has no real
effect. Each of the virtual Ethernet interfaces added to the bridge will inherit these values
from the bridge specification.

Virtual network interfaces are added to the bridge with the micctrl --network command.
The bridge argument must be present and the IP argument must specify IP addresses with
the first 3 quads matching those of the bridge IP address.

The IP address must be a fully qualified dot notated address. If more than one card is
specified, each card will get the same IP address with the cards number added to the
fourth quad. For example, if the address 10.10.10.12 is specified, the micN will receive
10.10.10.12 and micN 10.10.10.13.

The modhost parameter determines if the system administrator wants to modify the host
/etc/hosts file or not. The modcard determines if the system administrator wants the
configuration process to create the /etc/hosts on the card. Using either will override the
use of the old deprecated hosts parameter. The hosts parameter may still be used and
setting it will be treated as setting modhost and modcard with the specified parameter.

15.3.1.5 External Bridging

Command Syntax:

micctrl --addbridge=<brname> --type=external --ip=<bridge_IP> \
[--netbits=<bits>] [--mtu=<MTU>]

micctrl --network=static [--ip=<mic_IP>] [--bridge=<brname>] \
[--mtu=<mic_mtu>] [--modhost=<yes|no>] [--modcard=<yes|no>] [mic card list]

The micctrl Utility

User's Guide 91

micctrl --network=dhcp --bridge=<brname> [--modhost=<yes|no>]\
[--modcard=<yes|no>] [mic card list]

The external bridge type definition differs from internal bridge only in that micctrl does
not create the network configuration files for the host. It assumes that the bridge is
already connected to a physical Ethernet device. It is a task of the system administrator to
modify the configuration file for the physical Ethernet port to attach to the bridge.

External bridges may also be declared as dhcp instead of static. During boot, the Intel®
Xeon Phi™ coprocessor Linux* OS will attempt to retrieve an IP address from a DHCP
server. See micctrl --help for more details.

15.3.1.6 Modifying Existing Network Definitions

Command Syntax:

micctrl --modbridge=<brname> --ip=<IP> \

[--netbits=<bits>] [--mtu=<MTU>]

 micctrl --delbridge=<brname>

micctrl --network=static [--ip=<mic_IP>] \

[--mtu=<mic_mtu>] [--modhost=<yes|no>] \

[--modcard=<yes|no>] [mic card list]

 //bridge_ip for all

If changes to any of the bridges are required, the modbridge option to micctrl will allow
the change of any combination of ip, netbits or MTU. In addition any changes to MTU or
netbits will be propagated to any of the virtual network configuration files.

If a bridge is no longer needed, the delbridge option will remove it from the Intel® Xeon
Phi™ coprocessor configuration. If the bridge is not external, it will also remove the
corresponding host network configuration file.

NOTE: Intel® Xeon™ coprocessors must be detached before a bridge can be deleted. You can

use micctrl --network=default to remove coprocessors.

The micctrl --network command may also be used to change the node bridge parameters
for a set of interfaces. Specifying --network without a particular option will cause micctrl
to attempt to change the particular parameter.

15.3.1.7 Extra Networking Notes

On SUSE*, upon completion of all network change commands, run 1service networking
restart. Micctrl does not yet understand how to flush the name server cache.

(Intel® MPSS)

92 Document Number: 330076-001US

15.3.2 Change the UserAuthentication Configuration Parameter
Command Syntax:

 micctrl --configuser=none [-ids] [mic card list]

 micctrl --configuser=local [--low=<low uid>] \

[--high=<high uid] [-ids] [mic card list]

 This command was removed. Refer to the section on the micctrl --userupdate command
for its functional replacement.

15.3.3 Initializing The Intel® Xeon Phi™ Coprocessor Password File
Command Syntax:

 micctrl --userupdate=<mode> [--pass=<none | shadow>] \

[--nocreate] [mic card list]

It is necessary to control user access to the Intel® Xeon Phi™ coprocessor(s). The micctrl --
userupdate command allows the system administrator to specify when to reset or add
entries to the passwd file.

Using --userupdate requires the mode of use to be set and may be none, overlay, merge
or nochange. The nochange option will have no effect in most cases.

If mode is set to nochange and if no /etc/passwd exists then it defaults to the
functionality of setting overlay. Otherwise no changes to the /etc/passwd file will occur.

 If mode is set to none then only the minimal set of users including root, sshd, micuser,
nobody and nfsnobody.

If mode is set to overlay then the information in /etc/passwd and /etc/shadow will be
replace with the minimal users plus all users in the host’s /etc/passwd file.

If mode is set to merge then the host’s /etc/passwd file will be checked for any users not
in the cards file and added in.

The --pass argument allows the system administrator to decide whether the pass word for
the user from the host will be copied to the card or not. If it is set to none then the pass
word field in the /etc/shadow file will be filed with a ‘*’. If it is set to shadow then the
hosts pass word information for the user on the host will be used. It should be noted this
does not apply to SUSE* hosts using the default Blowfish encryption since the card will
not understand it.

The --nocreate argument specified to not create the associated home directory for the
user. This is intended to be used by systems where the users home directory will be
remote mounted.

The micctrl Utility

User's Guide 93

15.3.4 Adding Users to the Intel® Xeon Phi™ Coprocessor File
System
Command Syntax:

 micctrl --useradd=<name> --uid=<uid> --gid=<gid> \

[--home=<dir>] [--comment=<string>] [--app=<exec>] \

[--sshkeys=<keydir>] [--nocreate] \

[--non-unique] [mic card list]

The --useradd option adds the specified user name to the /etc/passwd and /etc/shadow
files on the Intel® Xeon Phi™ coprocessor file system. The system administrator must
specify the correct user and group IDs for the user that is being added.

NOTE: The behavior of micctrl --useradd differs from Linux* useradd. It does not check for

conflicting uid or gid for other users on the ldap server. System administrators should

not expect identical behavior between micctrl --useradd and Linux* useradd.

The --home argument specifies the user’s home directory in the card file system, and will
cause the directory to be created. The default home directory for user <name> is
/home/<name>.

The --comment argument specifies a comment string to be added to the comment field
in /etc/passwd. The default comment string is the user names.

The --app argument specifies the default application executed by the user. The default
app is /bin/sh.

The --sshkeys argument specifies the host directory in which the user’s secure shell key
files are to be found. The default is /home/<name>/.ssh.

The --nocreate option specifies to not create the home directory for the user and is
intended to be used when the users home directories are remote mounted.

The --non-unique option will allow the user to be added to the card’s /etc/passwd and
/etc/shadow files with the specified uid even if a user with that uid already exists.

In addition, a default .profile file will be added for the user.

The latest implementation will also add the user to the currently running coprocessor if it
is in the online state.

15.3.5 Removing Users from the Intel® Xeon Phi™ Coprocessor File
System
Command Syntax:

micctrl --userdel=<name> [--remove] [mic card list]

The --userdel option removes the specified user from the card’s /etc/passwd and
/etc/shadow files. It also removes the directory stored in the home field of the
/etc/passwd file.

(Intel® MPSS)

94 Document Number: 330076-001US

The current implementation also removes the user from the /etc/passd and /etc/shadow
files on the currently running coprocessor if it is in the online state. By default, it does not
remove the user’s home directory and is intended to prevent the removal of a user’s
remote mounted home directory. System administrators can force the removal of the
user’s home directory by including the --remove option.

15.3.6 Changing the Password for Users on the Intel® Xeon Phi™
Coprocessor File System
Command Syntax:

micctrl --passwd=<name> [--pass=<newpw>] [mic card list]

The --passwd option allows the system administrator to change the password for a user
on the coprocessors, or for users to change their own passwords. The system
administrator may also pass a new password on the command line with the --pass
command line option. If the --pass option is not used or a non superuser calls this option
then they will be prompted for the current passwd in the file before a change will be
allowed.

In the current implementation the new passwd will also set on the running coprocessor if
its state is set to online.

15.3.7 Updating a Users SSH Keys on the Intel® Xeon Phi™
Coprocessor File System
Command Syntax:

micctrl --sshkeys=<name> [--dir=<dir>] [mic card list]

The --sshkeys option allows a user's SSH keys to be updated on the coprocessor file
system. The directory is the location of all the keys required. This command copies the
key files with correct owner and permissions to the cards file system. It also creates
entries in the authorized_keys file for any file(s) with a “.pub” extension if it does not
already exist.

15.3.8 Adding Groups to the Intel® Xeon Phi™ Coprocessor File
System
Command Syntax:

micctrl --groupadd=<name> --gid=<gid> [mic card list]

The --groupadd option adds the specified group name and ID to the card’s /etc/group file.
In the current implementation the group will also be added to the running coprocessor’s
/etc/group file if it is in the online state.

The micctrl Utility

User's Guide 95

15.3.9 Removing Groups from the Intel® Xeon Phi™ Coprocessor
File System
Command Syntax:

micctrl --groupdel=<name> [mic card list]

The --groupdel option removes the specified group name entry from the card’s
/etc/group file. In the current implementation the group will also be removed from the
running coprocessor’s /etc/group file if it is in the online state.

15.3.10 Configuring LDAP on the Intel® Xeon Phi™ Coprocessor File
System
Command Syntax:

micctrl --ldap=<server> --base=<domain> [mic card list]

The --ldap option configures the coprocessor to use LDAP for user authentication. The
server argument species the LDAP authentication server and the base argument specifies
the domain to use.

If the server argument is set to remove then the use of LDAP on the card will be disabled.

Before this command can be used, micctrl must know where to find the required
LDAP_PAM and LDAP_NSS RPM files. These optional files must be available on the host
system and the directory where they exist must be configured with the micctrl --rpmdir
command.

15.3.11 Configuring NIS on the Intel® Xeon Phi™ Coprocessor File
System
Command Syntax:

micctrl --nis=<server> --domain=<domain> [mic card list]

The --nis option configures the coprocessor to use NIS for user authentication. The server
argument species the NIS/YP server and the domain argument specifies the domain to
use.

If the server argument is set to remove then the use of NIS on the card will be disabled.

Before this command can be used, micctrl must know where to find the required
NIS_YPTOOLS, NIS_YPBIND, NIS_NSS and NIS_RPC RPM files. These optional files must be
available on the host system and the directory where they exist must be configured with
the micctrl --rpmdir command.

(Intel® MPSS)

96 Document Number: 330076-001US

15.3.12 Setting the Root Device
The --rootdev option changes the configured RootDevice parameter. It defines whether
the Intel® Xeon Phi™ coprocessor file root system will be mounted from the initial ram
disk, a downloaded ram file system, or an NFS export.

The micctrl Utility

User's Guide 97

15.3.12.1 Ram Root File System

Command Syntax:

micctrl --rootdev=RamFS --target=<location> \

[mic card list]

micctrl --rootdev=StaticRamFS --target=<location> \

[mic card list]

Specifying a rootdev type of either RamsFS or StaticRamFS instructs the booting card to
mount its root file system by creating an image file specified by the target argument.
Target is the name of the compressed cpio image to be used for the Intel® Xeon Phi™
coprocessor file system. If it is not specified the default value of /var/mpss/micN.image
will be used. The init program will create a ram disk, load the files from target into it and
do a switch_root to the new file system.

The difference between RamFs and StaticRamFS is RamFS will build target each and every
time download is requested from the Base, CommonDir, MicDir, and any Overlay
parameters. The static definition will use target as it exists and error if it does not exist.

15.3.12.2 NFS Root File System

Command Syntax:

micctrl --rootdev=NFS --target=<location> -d -c \

[mic card list]

micctrl --rootdev=SplitNFS --target=<location> \

--usr=<usr location> -d -c [mic card list]

Specifying the NFS or SplitNFS options instructs the booting card to mount its root file
system from the NFS export specified by target. The target parameter will usually be
specified in the traditional nfs mount systems of <server>:<export>. micctrl will use the IP
address of the host as the server name. If target is not specified, then the default value of
/var/mpss/micN.export will be used. The NFS export should include rw and
no_root_squash in its definition. If the -d option is included, the old root device target
value will be deleted. If -c is included, micctrl will create it.

SplitNFS differs from NFS in that it also creates the correct files for a shared NFS export
for the /usr directory specified by usr location. If it is not specified, then it will default to
/var/mpss/usr.export. The system administrator must also add this to the exports file.

15.3.13 Adding an NFS Mount
Command Syntax:

micctrl --addnfs=<NFS export> --dir=<mount dir> \

[--options=<option>[,option,…]] [mic card list]

Add the NFS export to the MIC card's /etc/fstab.

(Intel® MPSS)

98 Document Number: 330076-001US

NFS export specifies the server and NFS export in the traditional <server>:<export>
format.

The --options or -o argument allows the adding of the standard NFS mount options.
Check NFS documentation for more information. The string supplied is directly placed
into the options field in the card’s /etc/fstab file.

Additional configuration for SUSE* based host systems: If NFS file system mounts are
added and the chckconfig utility is used to indicate starting the Intel MPSS stack at host
boot time, SUSE* does not ensure the NFS server starts before the coprocessors boot. To
ensure the NFS server is available, edit the /etc/init.d/mpss file and change the “#
Required-Start:” line to read “# Required-Start: nfsserver”.

15.3.14 Removing an NFS Mount
Command Syntax:

micctrl --remnfs=<mount dir> [mic card list]

The --remnfs option searches the /etc/fstab for the Intel® Xeon Phi™ coprocessor for the
specified mount point and removes the mount point from the file.

15.3.15 Specifying the Host Secure Shell Keys
Command Syntax:

micctrl --hostkeys=<keydir> [mic card list]

The --hostkeys option removes the host keys copied by the --initdefaults command and
replaces it with the files from the specified directory. Since these files are considered to
be highly persistent they should stay resident unless the --resetdefaults or --cleanconfig
option is performed.

15.3.16 Setting Startup Script Parameters
Command Syntax:

micctrl --service

micctrl --service=<name> --state=<on|off> \

[--start=<num>I [--stop=<num]] [mic card list]

The Intel® Xeon Phi™ coprocessor Linux* OS, like any Linux* OS, executes a series of
scripts on boot, which are located in /etc/init.d. To determine which of the installed
scripts are executed on any boot, links to these scripts are created in runlevel directory.
The card’s OS runs at level 5, defining the runlevel directory to be /etc/rc5.d.

On most Linux* systems, the service scripts to be executed are enabled or disabled using
the chkconfig command. On the Intel MPSS stack this is performed by the micctrl --
service command.

The micctrl Utility

User's Guide 99

The state option must be set to on or off and determines whether the script will execute
on boot. Services already included in the configuration may have their state changed
without specifying new start or stop values.

The start and stop parameters must be between 1 and 100, and determine the order in
which the services are executed. If stop is not specified, then it will be set to 100 – start.

Add on software containing a service script will include the Service parameter associated
with it. Modifying the default value included in its own configuration file will cause an
overriding entry to be set in the micN.conf file.

Micctrl --service may be called with no arguments and will display a list of current service
settings. Currently, no services are configured by default.

15.3.17 Overlaying File System with More Files
Command Syntax:

micctrl --overlay

micctrl --overlay=<type> --state=<on|off|delete> \

--source=<dir>I --target=<target> [mic card list]

The Overlay parameter specifies a block of files to be included in the Intel® Xeon Phi™
coprocessor file system. The type parameter specifies different methods of including files
known with the values filelist, simple, file, and rpm.

NOTE: Do not add overlays to the /tmp directory on the card, as it gets cleared each time the

card boots.

If the type is set to filelist, then files from the source directory will be placed on the card’s
file system, based on entries in a file specified by the target parameter. The filelist format
allows for copying random, or disassociated files to the card. It also provides a
mechanism for creating special file types and setting absolute privileges. For more
information on its format, check Section 16.1.

If the type is set to simple then the files from the source directory are copied directly to
the card’s file system under the target directory.

Setting the type argument to File specifies to copy the single file source to target in the
card’s file system.

If the type is set to rpm then the target parameter specifies either a single RPM or a
directory of RPMs to be installed on the coprocessor file system when an individual
coprocessor boots.

The state argument determines if the files are to be copied or not. Additional software
will be added by creating a configuration file in the /etc/mpss/conf.d directory with an
Overlay parameter included. Because micctrl cannot modify these files, changing the
default value of state will be done by duplicate entries in the micN.conf files. If state is
on, the files will be copied to the coprocessor's file system; if state is off, the files will not

(Intel® MPSS)

100 Document Number: 330076-001US

be copied. Calling micctrl --overlay with state set to delete will cause the entry to be
removed from the micN.conf file.

Micctrl --overlay may be called with no arguments and will display the current overlay
status.

15.3.18 Base Files Location
Command Syntax:

micctrl --base

micctrl --base=<default|cpio|dir> \

[--new=<location>] [mic card list]

The base argument modifies the Base parameter in the configuration files. By default,
micctrl --initdefaults points this parameter to a CPIO initial ram disk image installed by the
Intel® Xeon Phi™ coprocessor software. The Base parameter is normally in the
default.conf file. Changing it, by specifying the --base argument, will add an entry to the
micN.conf files and override the default value.

If base is set to default then the value is reset to the default location of the initial ram disk
CPIO image file.

If base is set to CPIO the Base parameter will be set to the new location. If the file does
not exist then the last value for Base will be copied to the new location.

If base is set to dir the new location must be a directory to contain the files previously
contained in the initial ram disk CPIO image. If the new directory does not exist it will be
created and the previous setting for the will be either copied there or expanded if it was a
CPIO file.

If --base is not specified then a list of the cards and their Base, CommonDir, and MicDir
parameters will be displayed.

15.3.19 Common Files Location
Command Syntax:

micctrl --commondir

micctrl --commondir=<commondir> [mic card list]

The commondir argument modifies the CommonDir parameter in the configuration files.
This parameter points to a directory of files to be downloaded to all Intel® Xeon Phi™
coprocessors in a host system. The micctrl --initdefaults option creates an empty
common directory if it does not exist. The CommonDir parameter is normally in the
default.conf file. Changing it, by specifying the commondir argument, will add an entry to
the micN.conf files and override the default value.

If the commondir directory does not exist then the location of the old CommonDir
parameter will be copied to the new location. After the files have been copied, the

The micctrl Utility

User's Guide 101

configurations for all known cards in the system are checked for references to the old
CommonDir values and if no references exist the files will be deleted.

If commondir is not specified then a list of the cards and their Base, CommonDir and
MicDir parameters will be displayed.

15.3.20 Coprocessor Unique Files Location
Command Syntax:

micctrl --micdir

micctrl --micdir=<micdir> [mic card list]

The micdir argument modifies the MicDir parameter in the configuration files. This
parameter points to a directory of files to be downloaded to all Intel® Xeon Phi™
coprocessors in a host system, containing files unique to each card instance. The micctrl -
-initdefaults option creates many default files here. Other micctrl commands modify
many of these files.

If the directory specified by --micdir= does not already exist, the files in the previous
location specified by the MicDir parameter in the micX.conf will be copied to the new
location, and the old location will be deleted.

If micdir is not specified then a list of the cards and their Base, CommonDir and MicDir
parameters will be displayed.

15.3.21 Location of Additional RPMs for the Intel® Xeon Phi™
Coprocessor File System
Command Syntax:

micctrl –-rpmdir=<location> [mic card list]

The rpmdir argument specifies the location for other micctrl commands to find required
coprocessor RPM files. This functionality has been implemented specifically to support
the --ldap and --nis options. It may change in future releases.

15.3.22 Coprocessor Linux* Image Location
Command Syntax:

micctrl --osimage

micctrl --osimage=<osimage> [mic card list]

The osimage option sets the location of the OSimage parameter. The OSimage defines
the Linux* operating system image to boot. The default value of this location is
/usr/share/mpss/boot/bzImage-knightscorner and is installed by the Intel MPSS software.

(Intel® MPSS)

102 Document Number: 330076-001US

15.3.23 Boot On Intel MPSS Service Start
Command Syntax:

micctrl --autoboot

micctrl --autoboot=<yes|no> [mic card list]

The autoboot argument sets the BootOnStart configuration parameter. This parameter
controls whether or not a coprocessor boots when the Intel MPSS service is started. A yes
value indicates to boot the card. If no value is specified then a list of the cards and the
current values of BootOnStart will be displayed.

15.3.24 Power Management Configuration
Command Syntax:

micctrl --pm

micctrl --pm=<default|off|set> \

[--corec6=<on|off>] [--pc3=<on|off>] \

[--pc6=<on|off>] [--cpufreq=<on|off>] \

[mic card list]

Setting the pm argument to default resets the values of power management for the list of
cards to the default values. In the current release, all power management parameters
other than cpufreq are set to off. This will change in a future release.

Setting the pm argument to off will also set all parameters to off other than cpufreq.

Setting the pm argument to set enables the use of the optional parameters corec6, pc3,
pc6, and cpufreq. Each optional parameter can be individually enabled or disabled by
setting the on or off values.

15.3.25 Cgroups Configuration
Command Syntax:

micctrl --cgroup --memory=<enable|disable> \

[mic card list]

The cgroup argument currently only supports enabling or disabling the memory cgroup
parameter. The default value is set to disable by the micctrl --initdefaults command.

15.3.26 Syslog Configuration
Command Syntax:

micctrl –-syslog=<buffer|file|remote> \

[--host=<targethost[:port]>] [--logfile=<location>] \

The micctrl Utility

User's Guide 103

[--loglevel=<loglevel] [mic card list]

The syslog argument modifies the /etc/syslog-startup.conf file for the list of coprocessors.

If syslog is set to buffer, it sets the syslog daemon to not take messages from the
coprocessor’s dmesg buffer. This effectively disables logging.

If syslog is set to file, it set the syslog daemon to log to the optional location in the
coprocessor’s filesystem or to /var/log/messages by default.

If syslog is set to remote, the syslog daemon is instructed to log to a the remote specifiled
by the optional host argument. When remote is used the targethost is required but the
port is optional and will be set to default 514 if not specified.

Changes to the logfile location take effect immediately on the coprocessor if it is running
and its state is currently online.

15.4 Other File System Helper Functions

15.4.1 Updating the Compressed CPIO Image
Command Syntax:

micctrl --updateramfs [mic card list]

The StaticRamFS root file system image is only changed when the system administrator
requests it. In many cluster systems this image will be built externally and put in place.

The --updateramfs option updates the image from the same parameters used by the
RamFS specification. The new image will be used the next time the card boots.

15.4.2 Updating the NFS Root Export
Command Syntax:

micctrl --updatenfs [mic card list]

micctrl --updateusr [mic card list]

When new software is added through updating the Intel MPSS stack or add-on products,
those changes must be propagated, or installed into the NFS root file system exports. The
micctrl --updatenfs command performs this process.

If the root device type has been set to SplitNFS it may also change files located in the
common /usr directory. The --updateusr command line option will complete this process.

(Intel® MPSS)

104 Document Number: 330076-001US

16 Adding Software
Typical installations are not static, and usually require the system administrator to add
additional files or directories to the Intel® Xeon Phi™ root file system that is downloaded
to the card.

16.1 The File System Creation Process
As previously described in Section 14.3.9, the RootDevice parameter defines the type of
root device to mount. When the type argument to RootDevice is RamFS or StaticRamFS,
a file system image is pushed to the card as its ram file system root file system. In this
section we describe the process of building such a root file system.

The process is driven by the configuration parameters Base, CommonDir, MicDir and
Overlay. Files in these directories must have the correct owners and permissions for
targeted coprocessor file system. The directories are processed in the following order:
Base, CommonDir, MicDir and Overlay.

16.2 Creating the Download Image File
The download image file for the RamFS root device type is created by processing the
configuration directives Base, CommonDir, MicDir, and any Overlays, in that order. As the
configuration directives are processed, a tree of filenames and their information is built.

When the tree is completely processed, the mpssd daemon or micctrl --updateramfs will
create a cpio entry for the file and append it to the filename specified by the RootDevice
directive. When processing is complete it then compresses the file.

16.3 Adding Files to the Root File System
Adding a file to the root file system can be done in two ways. The system administrator
can add an entry to some existing Base, CommonDir, MicDir, or Overlay by simply
copying to its location. Alternatively, the system administrator can add a new Overlay
configuration parameter with location and descriptor file arguments that describe the
files to be added.

16.3.1 Adding an Overlay
To add an Overlay set, the file must be placed in the correct location specified under
Overlay and added to the filelist file specified. The power of the Overlay is that it may be

Adding Software

User's Guide 105

called from a new configuration file in /etc/mpss/conf.d. Refer to the next section for an
example.

16.3.2 Example: Adding a New Global File Set
As an example, adding the /usr/bin/myutil to the Intel® Xeon Phi™ coprocessor file
system as an overlay would be done by adding the /etc/mpss/conf.d/mytuil.conf file and
with an Overlay parameter. This would contain:

Overlay Filelist /var/mpss/myutil /var/mpss/myutil/myutil.filelist on

The location argument to Overlay is /var/mpss/myutil, the directory under which the new
binary myutil is placed on the host. The descriptor file argument,
/var/mpss/myutil/myutil.filelist, identifies a filelist which describes the files to include
myutil on the filesystem. This file will contain:

dir /usr 755 0 0

dir /usr/bin 755 0 0

file /usr/bin/myutil myutil 755 0 0

(Intel® MPSS)

106 Document Number: 330076-001US

17 Linux* SYSFS Entries
The driver supplies configuration and control information to host software through the
Linux* Sysfs file system. The driver presents two sets of information:

 Driver global information is presented in the /sys/class/mic/ctrl directory.

 Information unique to an Intel® Xeon Phi™ coprocessor instance is presented in the
/sys/class/mic/micN directories, where N is an integer number (0, 1, 2, 3, etc.) that
identifies the card instance.

17.1 The Global Mic.ko Driver SYSFS Entries

17.1.1 Revision Information
Sysfs Entries:

/sys/class/mic/ctrl/version

This entry is read-only. The version sysfs entry displays a string containing the ID of the
build producing the current installed software.

17.1.2 Other Global SYSFS Entries
Sysfs Entries:

/sys/class/mic/ctrl/peer2peer

/sys/class/mic/ctrl/vnet

The peer2peer entry contains the state of the Intel® Symmetric Communications
Interface (SCIF) peer-to-peer transfer code. It will be either set to enable or disable.

The vnet entry will contain the number of active links to the virtual Ethernet.

Linux* SYSFS Entries

User's Guide 107

17.2 The Intel® Xeon Phi™ Mic.ko Driver SYSFS

Entries
Hardware Information
Sysfs Entries:

/sys/class/mic/micN/family

/sys/class/mic/micN/sku

/sys/class/mic/micN/stepping

/sys/class/mic/micN/active_cores

/sys/class/mic/micN/memsize

These sysfs entries are all read-only.

The family sysfs node reports the family the Intel® Xeon Phi™ coprocessor belongs to. At
this time the family should always report the string “x100”.

The sku sysfs node returns a string defining the device type. As an example it may report
the string “C0-3120/3120A”.

The stepping node returns the processor stepping. Typically it will be B0, B1, C0, etc.

The active_cores node reports the actual number of working cores on the card.

The memsize node returns the size of memory on the Intel® Xeon Phi™ coprocessor.

17.2.1 State SYSFS Entries
Sysfs Entries:

/sys/class/mic/micN/state

/sys/class/mic/micN/mode

/sys/class/mic/micN/image

/sys/class/mic/micN/cmdline

/sys/class/mic/micN/kernel_cmdline

The state and cmdline sysfs nodes are read and write. The others are read-only.

The state sysfs node will show one of the following values:

 ready card is ready for a boot command

 booting card is currently booting

 no response card is not responding

 boot failed card failed to boot

 online card is currently booted

 shutdown card is currently shutting down

(Intel® MPSS)

108 Document Number: 330076-001US

 lost booted card is not responding

 resetting card is processing soft reset

 reset failed card cannot be reset – non recoverable

Additionally, if the state is booting, online or shutdown, the state is modified by the
information from the mode and image sysfs nodes. The mode will be either linux or elf.
The image file will contain the name of the file used to boot into the associated mode.

Writing to the state sysfs node requests the driver to initiate a change in state. The
allowable requests are to boot, reset or shutdown the Intel® Xeon Phi™ coprocessor.

To boot a card, the string to write has the format “boot:linux:<image name>”. The mpssd
daemon uses its OSimage parameter to fill in the image name. For example the default
Linux* image for the Intel®Xeon Phi™ coprocessor will create the string “boot:linux:
/usr/share/mpss/boot/bzImage-knightscorner”. After a successful boot the state will be
online, mode will be linux, and image will be /usr/share/mpss/boot/bzImage-
knightscorner.

The cmdline parameter is set by user software, normally the mpssd daemon or micctrl
utility, to pass kernel command line parameters to the Intel® Xeon Phi™ coprocessor
Linux* boot process. Current parameters include root file system, console device
information, power management options and verbose parameters. When the state sysfs
node requests the card to boot, the driver adds other kernel command line information to
the string and records the complete string that was passed to the booting embedded
Linux* OS in the kernel_cmdline sysfs node.

17.2.2 Statistics
Sysfs Entries:

/sys/class/mic/micN/boot_count

/sys/class/mic/micN/crash_count

These entries are read-only. The boot_count sysfs node returns the number of times that
the Intel® Xeon Phi™ coprocessor has booted to the online state. The crash_count sysfs
node records the number of times that the card has crashed.

17.2.3 Debug SYSFS Entries
Sysfs Entries:

/sys/class/mic/micN/platform

/sys/class/mic/micN/post_code

/sys/class/mic/micN/scif_status

/sys/class/mic/micN/log_buf_addr

/sys/class/mic/micN/log_buf_len

Linux* SYSFS Entries

User's Guide 109

/sys/class/mic/micN/virtblk_file

The platform, post_code, and scif_status entries are read-only; the log_buf_addr,
log_buf_len, and virtblk_file entries are read and write.

The platform sysfs node should always return a zero value.

The post_code sysfs node returns the contents of the hardware register containing the
state of the boot loader code. Reading it always returns two ASCII characters. Possible
values of note are the strings “12”, “FF” and any starting with the character ‘3’. A string
of “12” indicates the Intel® Xeon Phi™ coprocessor is in the ready state and waiting for a
command to start executing. A string of “FF” indicates the coprocessor is executing code.
A string starting with the character ‘3’ indicates the coprocessor is in the process of
training memory. Any other value should be transitory. Any other value remaining for
any length of time indicates an error and should be reported to Intel.

The log_buf_addr and log_buf_len parameters inform the driver of the memory address
in the Intel® Xeon Phi™ coprocessor memory to read its Linux* kernel log buffer. The
correct values to set are found by looking for the strings “log_buf_addr” and log_buf_len”
in the Linux* system map file associated with the file in the OSimage parameter, and are
typically set by the mpssd daemon.

The virtblk_file sysfs node indicates the file assigned to the virtio block interface.

17.2.4 Flash SYSFS Entries
Sysfs Entries:

/sys/class/mic/micN/flashversion

/sys/class/mic/micN/flash_update

/sys/class/mic/micN/fail_safe_offset

These nodes are all read-only. The flashversion sysfs node

returns the current version of the flash image installed on the

card by the micflash utility. The other two are used by the

micflash command. Root privileges are required to read

flash_update and fail_safe_offset entries.

17.2.5 Power Management SYSFS Entries
Sysfs Entries:

/sys/class/mic/micN/pc3_enabled

/sys/class/mic/micN/pc6_enabled

The pc3_enabled node reports the current setting of the pc3 power management setting.
If pc3 power management is causing errors, writing a “0” to this setting will disable pc3
power management.

(Intel® MPSS)

110 Document Number: 330076-001US

The pc6_enabled node reports the current setting of the pc6 power management setting.
If pc6 power management is causing errors, writing a “0” to this setting will disable pc6
power management.

17.2.6 Other SYSFS Entries
Sysfs Entries:

/sys/class/mic/micN/extended_family

/sys/class/mic/micN/extended_model

/sys/class/mic/micN/fuse_config_rev

/sys/class/mic/micN/meminfo

/sys/class/mic/micN/memoryfrequency

/sys/class/mic/micN/memoryvoltage

/sys/class/mic/micN/model

/sys/class/mic/micN/stepping

/sys/class/mic/micN/stepping_data

These sysfs nodes are all read-only and return the contents of a particular hardware
register. They are used by the micinfo command.

General Services Tutorial

User's Guide 111

18 General Services Tutorial
This is a brief description of how services start on supported Linux host Operating

Systems and the Intel® Xeon Phi™ coprocessor. This is intended for customers who are

adding custom services that may interact with the services supplied with Intel MPSS. In

all cases the described priority only applies to initial boot and run level changes. The

priority or dependencies are not checked when services are manually started and

stopped.

18.1 Service Startup by Priorities (Redhat 6.x)
Redhat traditionally uses this method of startup and shutdown. A line is added to the

top of the service script that defines the run levels and priority of when a service starts

at boot time.

Here is an example snippet from the top of a service file:

#!/bin/bash

chkconfig: 2345 10 90

...

This tells the startup daemon in Linux to shut down the service early (priority 10) and

start the service late (priority 90) when entering Linux run levels 2, 3, 4, and 5. If a

service A depends on another service B the shutdown and startup priorities should

reflect the relative priorities sooner and later respectively.

#!/bin/bash

Service B

chkconfig: 2345 10 90

and…

#!/bin/bash

Service A

chkconfig: 2345 9 91

NOTE: The priority increases in time for both shut down and start of a service. Now service A

will start after service B and service B will shutdown after service A.

When you have multiple dependencies make sure the new service’s shutdown time in

the minimum of the dependencies minus 1 and the start priority is max of dependencies

+ 1.

(Intel® MPSS)

112 Document Number: 330076-001US

There is a tool for managing services runlevels and priorities called chkconfig. For more

details please see:

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html

18.2 Service Startup by Dependencies (SuSE 11 SP2

& SP3)
In addition to the chkconfig comment line from the Redhat distribution priority method,
SuSE 11 adds a new concept to the startup order, dependencies. The chkconfig method is
present for backward compatibility.

Here is a snippet we can refer to:

#!/bin/bash

chkconfig: 35 75 54

description: Novell Identity Manager User Application

BEGIN INIT INFO

Provides: userapp

Required-Start: $ndsd $network $time

Required-Stop:

Default-Start: 3 5

Default-Stop: 0 1 2 6

Short-Description: Novell IDM UserApp

Description: Novell Identity Manager User Application

END INIT INFO

Some short definitions:

Provides - The name used to identify this service in the init daemon

Required-Start - Space delimited Provides names of services to start before this
service

Required-Stop - Space delimited Provides names of services to stop before this
service

Default-Start - Space delimited list of run levels to start when transitioning run
levels

Default-Stop - Space delimited list of run levels to stop when transitioning run
levels

Short-Description - Short display name of service

Description - Full display name of service

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s2-services-chkconfig.html

General Services Tutorial

User's Guide 113

To make sure the service start order is correct, pick the list of service dependencies and
list them on the Required-Start line. Make sure to fill in the start and stop run levels as
appropriate. Optionally list the services to stop after the service represented by this
script.

NOTE: All names used for service reference must be the Provides name and not the file name

of the script!

For more details on this method see:

http://www.novell.com/support/kb/doc.php?id=7002295

18.3 Xeon Phi™ Coprocessor Method for Service

Start Priority
The Intel® Xeon Phi™ coprocessor’s init daemon using the SuSE 11 dependency system
described above in the previous section.

http://www.novell.com/support/kb/doc.php?id=7002295

(Intel® MPSS)

114 Document Number: 330076-001US

19 Configuration Examples

19.1 Network Configuration
Linux* provides functionality for creating a new network interface for physical interfaces
to slave to. Network packets received on any of the slaves are passed unchanged to the
bridge. The bridge is assigned the IP address associated with the system it exists on.

Network packets arriving on any of the physical interfaces are passed to the bridge. If the
destination for the packet is the IP address assigned to the bridge, it is passed to the
TCP/IP stack on the system. If it is any other destination, the bridge performs the role of a
network switch and passes it to the correct physical interface for retransmit.

The Intel MPSS software uses the bridging functionality to place the virtual network for
each card on the same subnet allowing standard networking software to function
seamlessly.

19.1.1 Internal Bridge Example
Internal bridging is a term created to describe a networking topology with Intel® Xeon
Phi™ coprocessors connected through a bridged configuration. The advantage of the
internal bridge over the default static pair network configuration is the ability for the
cards to communicate with each other as well as the host.

Figure 3 Internal bridge network

If the cards must communicate with the broader physical network, the bridge must be
routed to physical Ethernet.

Host

br0
10.10.10.254

eth0
12.12.12.12

mic1 Mic1
mic0

10.10.10.2

mic0 Mic0
mic0

10.10.10.1

Configuration Examples

User's Guide 115

Figure 3 Internal bridge network illustrates the internal bridged network topology. In

this example the host and the cards can all communicate through the 10.10.10 subnet.

The host can communicate outside through the 12.12.12 subnet but the cards cannot.

The series of commands to create this topology would be:

[host]# micctrl --addbridge=br0 --type=internal \

--ip=10.10.10.254

[host]# micctrl --network=static --bridge=br0 --ip=10.10.10.1

The micctrl --addbridge command performs a series of steps starting with removing the
old network configuration. Then, if the host does not have a configuration for the
designated bridge in /etc/sysconfig/network-scripts/ifcfg-br0, it creates it containing:

DEVICE=br0

TYPE=Bridge

ONBOOT=yes

DELAY=0

NM_CONTROLLED="no"

BOOTPROTO=static

IPADDR=10.10.10.254

NETMASK=255.255.255.0

The micctrl utility then executes an “ifup br0” command to enable the new bridge
interface. After the bridge is enabled the /etc/mpss/default.conf file has the additional
line:

Bridge br0 Internal 10.10.10.254 24

The value of 24 at the end of the line is the default NetBits or PREFIX value of 24 defining
a netmask of FFFFFF00. If the --mtu option had been used on the micctrl command line
then it would have followed the 24.

The micctrl --network command slaves the host ends of the virtual network, connects to
the designated bridge br0, and replaces the network configuration files for the Intel®
Xeon Phi™ coprocessors with a configuration for the new IP addresses. The first step of
this process is to shutdown the current virtual network connections with the ifdown
command, then create new configuration files. The /etc/sysconfig/network-scripts/ifcfg-
micN becomes:

DEVICE=micN

ONBOOT=yes

NM_CONTROLLED="no"

BRIDGE=br0

The /etc/sysconfig/network-scripts/ifcfg-micN file contains the same information with the
exception of DEVICE. If the associated bridge configuration had set an MTU value other
than the default, this file would also contain an MTU value assignment.

(Intel® MPSS)

116 Document Number: 330076-001US

When this is complete micctrl executes ifup commands on both micN’s. At the end of
this process, the brctl show command can be used to check the status of the bridge. Its
output should be:

bridge name bridge id

STP enabled interfaces

br0 8000.66a8476a8f15

no micN

 micN

The ifconfig command relevant output should be:

br0 Link encap:Ethernet

 inet addr:10.10.10.254 Bcast:10.10.10.255 Mask:255.255.255.0

micN Link encap:Ethernet

micN Link encap:Ethernet

These commands show the micN and micN virtual network interfaces are slaved to bridge
br0. Bridge br0 has been assigned the host IP address and the slaves do not have their
own IP addresses.

The old Network configuration parameters in each card’s configuration file are then
replaced with the new line. For example the /etc/mpss/micN.conf file now has the
Network configuration line:

Network StaticBridge br0 10.10.10.1 yes

The /etc/mpss/micN.conf file will have the same line with the exception of the IP address
being assigned the value 10.10.10.2.

Micctrl then creates the network configuration files for the Intel® Xeon Phi™ coprocessor
file system. It will first create the network interface configuration file
/var/mpss/micN/etc/network/interfaces with the contents:

 auto micN

 iface micN inet static

 address 10.10.10.1

 gateway 10.10.10.254

 netmask 255.255.255.0

The /var/mpss/micN/etc/network/interfaces file is similar, with correct address, gateway,
and netmask values corresponding to coprocessor micN.

Next it will create the /var/mpss/micN/etc/hosts with the content similar to:

127.0.0.1 zappa-micN.music.local micN localhost.localdomain localhost

::1 zappa-micN.music.local micN localhost.localdomain localhost

10.10.10.254 host zappa.music.local

Configuration Examples

User's Guide 117

10.10.10.1 micN zappa-micN.music.local micN

NOTE: The entries contained in the configuration file Hostname parameter are related to the IP

addresses of other reachable network interfaces, along with the shortened form host,

micN, micN, etc.

The last of the process is to add entries to the /etc/hosts file on the host. This last
process could be avoided if the micctrl --network command specifies the option
--modhost=no.

The next boot of the Intel® Xeon Phi™ coprocessors, by either 1service mpss start or
micctrl -b will use the new network configuration and the cards will be able to ssh to each
other.

19.1.2 Basic External Bridge Example
External bridging is a term used in the Intel MPSS software to describe a network

topology where the virtual network interfaces are bridged to a physical network

interface. This will be the desired configuration in clusters. The topology diagram in

Figure 4 External bridge network shows individual hosts and their Intel® Xeon Phi™

coprocessors become a part of the larger subnet.

Figure 4 External bridge network

This section discusses the steps required to create an external bridge topology as
illustrated above.

(Intel® MPSS)

118 Document Number: 330076-001US

On the host node0 the commands to configure the virtual network interfaces are:

[host]# micctrl --addbridge=br0 \

--type=external --ip=10.10.10.2

[host]# micctrl --network=static --bridge=br0 \

--ip=10.10.10.3

And on the host node1 the commands are:

[host]# micctrl --addbridge=br0 \

--type=external --ip=10.10.10.5

[host]# micctrl --network=static --bridge=br0 \

--ip=10.10.10.6

Normally, the system administrator will have configured the bridge br0 and tied the eth0
interface to it before these configuration calls. If they did not, then micctrl will create the
/etc/sysconfig/network-scripts/ifcfg-br0. It will not, however, create the configuration file
for the eth0 physical network interface; the system administrator will need to do this step.
An example of /etc/sysconfig/network-scripts/ifcfg-eth0 file is:

DEVICE=eth0

NM_CONTROLLED=no

TYPE=Ethernet

ONBOOT=yes

BRIDGE=br0

When this is completed, perform a 1service network restart.

In the process of configuring an external bridge, micctrl assumes that the network packet
MTU size must be set to the Ethernet standard 1500 bytes. This value significantly slows
down data transfer across the virtual Ethernet interfaces. If the physical network
hardware allows, it would be better to increase the MTU size to the biggest possible value.
Typically most hardware will support at least 9000 byte mtu sizes.

This could have been set by the original micctrl --addbridge command with the addition
of the --mtu=9000 argument. If this was not done and the system administrator wishes to
increase the value, this may be done with the command:

[host]# micctrl --modbridge --mtu=9000

19.2 IPoIB Networking Configuration
The OFED IPoIB driver is an implementation of the IP over InfiniBand protocol as specified
by RFC 4391 and 4392, issued by the IETF IPoIB working group. It is a native
implementation in the sense of setting the interface type to ARPHRD_INFINIBAND and the
hardware address length to 20 versus implementations that are masqueraded to the
kernel as Ethernet interfaces.

Configuration Examples

User's Guide 119

The code base is a direct port from OFED 1.5.4.1, without change. The module runs on
top of Intel® Xeon Phi™ CCL-Direct Kernel IB Verbs. As a result, most of the functional and
performance characteristics are bound by CCL-Direct restrictions. The driver is released
to enable InfiniBand-based Lustre* solutions that require IPoIB interface regardless of
LNET configurations.

19.2.1 Managing the IPoIB Interface
The Intel® Xeon Phi™ coprocessor IPoIB currently manages the virtual IB devices via CCL-
Direct IBP proxy drivers. Its existing configuration parameters are inherited from OFED
setting without change.

To enable the IPoIB interface on the Intel® Xeon Phi™ coprocessor from the host, edit
/etc/mpss/ipoib.conf to bring up the “ib0” interface on a coprocessor with the default
hostname (micN):

ipoib_enabled=yes
micN_ib0=192.168.100.100

19.2.2 IP Addressing
Unlike the Intel® Xeon Phi™ coprocessor Ethernet virtual driver, IPoIB does not require
bridging or routing to be configured. In the default case, there is an automatically created
one-to-one mapping of (HCA, Port) pair between the host and coprocessor. Figure 1

TCP

InfiniBand Interconnect

Intel® Xeon® Host

TCP

IB Kernel Verbs

IB Device Driver

IP

IPOIB

UDP Others CCL-Direct

IBP Proxy

(IBP, SA,

CM)

Intel® Xeon Phi™ Coprocessor

IB Kernel Verbs

IP

CCL-Direct IBP Proxy (IBP, SA, CM)

UDP

IB-HCA-1

port-1

ib0

port-1

ib1

IB-HCA-2

port-1

ib0

port-1

ib1

IB-HCA-1

port-1

ib0

port-1

ib1

IB-HCA-2

port-1

ib0

port-1

ib1

Others

IPOIB
Send/Recv

()

DeviceMgm

IBP Exported Virtual Device

Intel® Xeon Phi™ Scif Interface

Xeon Phi Add-ons Physical Device

Figure 5 One-to-One IB Device (HCA, Port) Mapping between Host and Coprocessor

(Intel® MPSS)

120 Document Number: 330076-001US

shows an example configuration with two 2-port HCAs on the host. All 8 ports (host and
coprocessor combined) can be individually configured by “net-if” commands. On the
Intel® Xeon Phi™ node, the setting is configured by ifconfig command, by adding a
configuration file in /etc/sysconfig/network, or by editing /etc/mpss/ipoib.conf. The host
side follows the host OS conventions.

19.2.3 Datagram vs. Connected Modes
The driver supports two modes of operation: datagram and connected. The mode is set
and read through the interface’s /sys/class/net/<intf name>/mode file. Datagram is the
default mode.

In datagram mode, the CCL-Direct IB UD transport is used, and the IPoIB MTU is equal to
the IB L2 MTU minus the IPoIB encapsulation header (4 bytes). For example, in a typical
IB fabric with a 2K MTU, the IPoIB MTU will be 2048 - 4 = 2044 bytes.

In connected mode, the IB RC transport is used. Connected mode takes advantage of the
connected nature of the IB transport that allows an MTU up to the maximal IP packet size
of 64K. This reduces the number of IP packets needed for handling large UDP datagrams
and TCP segments, and increases the performance for large messages.

Intel MPSS Cluster Setup Guide

User's Guide 121

20 Intel MPSS Cluster Setup Guide
This section is designed to outline the basic steps necessary to configure Intel® Xeon Phi™
coprocessors, based on Intel® Many Integrated Core (Intel® MIC) Architecture, in a wide
variety of cluster environments. Some examples in this document may not apply to
specific cluster environments, but were created in a general way so that they may be
adapted. The following items are covered:

 Setting up an environment that enables communication between Intel® Xeon Phi™
coprocessors in the cluster to enable the user to run the Intel® Message Passing
Interface (Intel® MPI) application via a Static Bridge or DHCP configuration.

 Enabling users to connect to and from the Intel® Xeon Phi™ coprocessor by using SSH
without a password.

 Enabling administrators to mount the home file system.

 Bulk Coprocessor Flash update procedure in a cluster

The flowchart in Figure 6 Setup process flowchart shows the set up process that is
covered in this document:

Get MPSS
package

Complete requirements and
pre-work on Xeon™ Cluster

If using Static Bridge
Configuration

Driver Installation and Flash
Update

If using DHCP
configuration

Set up Static Bridge
Configuration

Initialize Configuration

Set up Name resolution

Set up permanent
MAC address

Update Named and
DHCP configuration

Set up DHCP
configuration

Set up Mounted
Filesystem

Start MPSS Service
(and CCL service)

Basic Setup
Completed

 Figure 6 Setup process flowchart

(Intel® MPSS)

122 Document Number: 330076-001US

More features and functionalities are available for additional configuration but will not be
covered here. See Sections 12 through 18 of this User’s Guide for detailed information on
using the micctrl tool and setting up various coprocessor network options.

20.1 Pre-work
Ensure that the following requirements are met before installing the Intel MPSS RPMs and
updating the coprocessor Flash image.

1) Verify administrative access privileges (i.e. root access).

2) Verify that the kernel version of the Operating System installed in the cluster is
supported for Intel® Manycore Platform Software Stack (Intel MPSS). If not, then it
will be necessary to rebuild the kmod*.rpms (see readme.txt, Section 2.1,
“Requirements”, under “Resolution 2”).

3) Execute uname -a on the console to verify the version of the Linux* Kernel that is
running.

4) Match the Intel MPSS RPM package build to the Linux* Kernel or operating system
running on the cluster. For example, see the supported Linux* Kernel versions below:

 Red Hat*/Centos* 6.3 = 2.6.32-279

 Red Hat*/Centos* 6.4 = 2.6.32-358

 Red Hat*/Centos* 6.5 = 2.6.32-431

 SUSE* 11 SP2 = 3.0.13-0.27

 SUSE* 11 SP3 = 3.0.76-0.11

5) Ensure that the Intel® Xeon Phi™ coprocessors are installed on the Intel® Xeon® host
systems of the cluster, and are visible through the standard lspci command:

[host]# lspci | grep -i co-processor

7) You should see something like this on the console (actual bus number and device ID
may vary based on coprocessor SKU and PCIe slot used):

08:00.0 Co-processor: Intel Corporation Device 225c (rev 20)

7) Ethernet network connection between the cluster head node and the compute nodes
are functional.

8) Intel® ComposerXE and Intel® MPI packages (download from Intel® Premier) are
installed and sourced as needed.

Intel MPSS Cluster Setup Guide

User's Guide 123

20.2 RSA/DSA Key Creation
RSA/DSA keys for root and user (when available) should be created prior to Intel MPSS
installation. This will allow the mpssd daemon to automatically obtain the keys and copy
them to the coprocessor when the service is started.

20.3 IP Assignment
In order to get the Intel® Xeon Phi™ coprocessor to communicate with cards within the
compute node as well as cards outside the compute node, all assigned IP addresses for
the coprocessor have to be set to the same subnet as the rest of the cluster. There are
various options for implementing this. See section 19.1 Network Configuration to learn
how to set up the bridging options using the micctrl utility.

20.4 Flash Update in Cluster Environment
To update the coprocessor flash image in a cluster environment, it is recommended to

use a utility like PDSH (Parallel Distributed Shell) to initiate the flash update over a large

number of cards in parallel. To update the flash manually one node at a time, see Section

2.4, “Intel® Xeon Phi™ Coprocessor Flash & SMC Update”, in the Intel MPSS Readme.

In a cluster environment, it is recommended to use a tool like the open source Parallel
Distributed Shell (PDSH), found in http://sourceforge.net/projects/pdsh, to update all the
compute nodes at the same time, although any parallel shell tool can be used. The
generic command usage for pdsh is:

[host]# pdsh -w <node range> <command>

To update the coprocessor flash on many cards in a clustered setup follow these basic
steps below:

1) Ensure that an ssh session from the head node to the compute node(s) is successful
without a password since psdh will also use ssh to communicate to all coprocessors in
the cluster.

2) Ensure that the flash RPM is installed, which contains the flash update files needed.
3) Ensure that the coprocessors are in the ready state in preparation of the card flash

update procedure and Intel MPSS service is not running.

[host]# pdsh -w node[1-4] ‘micctrl -r’

4) Ensure that the required Intel MPSS configuration has been initialized in /etc/mpss by
executing the following command:

[host]# pdsh -w node[1-4] ‘micctrl --initdefaults’

http://sourceforge.net/projects/pdsh

(Intel® MPSS)

124 Document Number: 330076-001US

Update the coprocessor SMC and flash image by executing the following commands:

[host]# pdsh -w node[1-4] ‘micflash -update \

/usr/share/mpss/flash/EXT_HP2_SMC_Bootloader_1_8_4326.css_ab \

-device all -noreboot’

NOTE: The above command is only required for B0 or B1 silicon stepping, skip for C-stepping.

[host]# pdsh -w node[1-4] ‘micflash –update \

/usr/share/mpss/flash/EXT_HP2_XX_XXXX-XX.rom.smc \

-device all -silent -log root/micflash_update_log.txt \

-noreboot’

A reboot of each compute node that has a coprocessor installed is required after the flash
update is successful.

The micflash tool will report the status of the coprocessor flash update on each card in
the cluster. Search for the final status in the log files created across the nodes, such as:

[host]# pdsh -w node[1-4] grep status \

/root/micflash_update_log.txt

Verify that the flash and SMC update indicates success (i.e. no errors). If you see errors
on some nodes, confirm that the coprocessors on these nodes were in the ‘ready’ state
and not the ‘online’ state. You can also issue a ‘micctrl -s’ command to check the state of
the coprocessors on each node to ensure they were in the ‘ready’ state as required for
the flash update tool.

20.5 Initialize Configuration
Configuration should already be initialized during the flash update process in the previous
chapter. However, if the node is reimaged or a new coprocessor is added to the server,
the configuration must be reinitialized:

[host]# micctrl --initdefaults

This will generate the required default.conf and micN.conf files for all detected Intel®
Xeon Phi™ coprocessors.

20.6 Set Up Static Bridge Configuration
This section will cover how to set up the Static Bridge configuration. Skip this section if
you are setting up the DHCP configuration. Also see Section 14 for more info on
coprocessor network configuration options using the micctrl tool.

Intel MPSS Cluster Setup Guide

User's Guide 125

20.6.1 Modify the Intel MPSS Configuration
There are two ways to set up the coprocessor configuration file. The first (and
recommended) option is to use micctrl to set up the environment:

1) Add the coprocessors to the preexisting bridge:

[host]# micctrl --addbridge=br0 --type=External \

--ip=$HostIP --netbits=24 micN micN

where $HostIP is the IP address of the br0.

2) Set up the IP for the coprocessor:

[host]# micctrl --network=static --bridge=br0 \

--ip=$MICNIP:$MICNIP --netbits=24 micN micN

where $MICNIP is the IP for micN, and $MICNIP is the IP for

micN.

3) Additional step for SUSE* Linux* Enterprise Server: Make sure to restart the network
so the compute node’s network stack can reflect the changes.

[host]# 1service network restart

Alternatively, system administrators can directly modify the configuration files located in
the /etc/mpss/ directory:

1) Add the following line in the default.conf file, so that it has the bridge setup:

Bridge $Bridgename External $Bridge_or_Host_IP $Netbits $MTUSize

 Where:

a) $Bridgename can be the host’s preexisting bridge name (usually set as br0).

b) $Bridge_or_Host_IP should have the same value as what is assigned to the
network bridge of choice.

c) $Netbits value should be equivalent to the bridge’s netmask.

d) $MTUSize value should be identical to the bridge’s MTU size.

Example line for default.conf for node with bridge br0 with IP 192.168.0.1:

Bridge br0 External 192.168.0.1 24 9000

2) Modify the Network configuration line in the micN.conf to make sure the Static Pair
configuration is changed to Static Bridge:

 Network StaticBridge $Bridgename $MICnIPAddr $Y_N_Update_etc_host

 Where:

a) $Bridgename is the bridge that is defined in the default.conf.

b) $MICnIPAddr is the IP address for MICN (micN, micN,…).

c) $Y_N_Update_etc_host is to decide whether to update the /etc/hosts.

(Intel® MPSS)

126 Document Number: 330076-001US

Example for micN with IP of 192.168.0.2 and choose to update the /etc/hosts:
Original line:

Network class=StaticPair micip=172.31.1.1

hostip=172.31.1.254 mtu=64512 netbits=24 modhost=yes

modcard=yes

Replace with:

3) Additional step for SUSE* Linux* Enterprise Server: Make sure to restart the network
so the compute node’s network stack can reflect the changes.

[host]$
1
service network restart

20.6.2 Set Up Name Resolution for Static Bridge Configuration

20.6.2.1 Modify the host’s /etc/hosts

All compute nodes have to be able to identify each other as well as the Intel® Xeon Phi™
coprocessors. A simple way to ensure this is to populate the entire compute node’s
/etc/hosts files with all available cards’ IPs as shown below:

127.0.0.1 localhost

192.168.0.254 CChead.cluster CChead

master.cluster master

#Xeon Servers

192.168.0.1 node1

192.168.0.4 node2

192.168.0.7 node3

192.168.0.10 node4

#MICs

192.168.0.2 node1-micN

192.168.0.3 node1-micN

192.168.0.5 node2-micN

192.168.0.6 node2-micN

192.168.0.8 node3-micN

192.168.0.9 node3-micN

192.168.0.11 node4-micN

192.168.0.12 node4-micN

20.6.2.2 Modify the coprocessors’ /etc/hosts

Modify the following /etc/hosts located on the host:

 /var/mpss/micN/etc/hosts (for micN)
 /var/mpss/micN/etc/hosts (for micN)

 Network class=StaticBridge bridge=br0 micip=192.168.0.2

modhost=yes modcard=yes

Intel MPSS Cluster Setup Guide

User's Guide 127

Example for the coprocessors’ /etc/hosts (for micN):

127.0.0.1 node1-micN micN localhost.localdomain

localhost

::1 node1-micN micN localhost.localdomain

localhost

192.168.0.1 host node1

192.168.0.3 micN node1-micN

192.168.0.4 node2

192.168.0.5 node2-micN

192.168.0.6 node2-micN

192.168.0.7 node3

192.168.0.8 node3-micN

192.168.0.9 node3-micN

192.168.0.10 node4

192.168.0.11 node4-micN

192.168.0.12 node4-micN

20.7 Set up DHCP Configuration
This section will cover how to set up a DHCP networked configuration. Skip this section if
setting up the Static Bridge configuration. A permanent MAC address is required to make
sure the DHCP IP for the coprocessor will never change. System administrators have the
option to use the default DHCP leases, however it will not be recommended since name
resolution cannot be set definitively.

20.7.1 Modify the Intel MPSS Configuration
There are two ways to set up the DHCP networked configuration. The first (and
recommended) option is to use micctrl to set up the environment:

1) Add the coprocessors to the preexisting bridge:

[host]# micctrl --addbridge=br0 --type=External \

--ip=dhcp micN micN

2) Set up DHCP for the coprocessor:

[host]# micctrl --network=dhcp --bridge=br0 \

--ip=dhcp micN micN

Alternatively, system administrators can directly modify the configuration files located in
the /etc/mpss/ directory:

3) Add a line in default.conf with the bridge configuration:

Bridge $Bridgename External dhcp 24 9000

Example:

(Intel® MPSS)

128 Document Number: 330076-001US

 Bridge br0 External dhcp 24 9000

4) Modify the Network configuration line in the micN.conf to change the Static Pair
configuration so that it will be redirected to the bridge instead:

Network Bridge $Bridgename

Where:

$Bridgename is the bridge that is defined in the default.conf

Example:

 Network class=Bridge bridge=br0

20.7.2 Set Permanent MAC Address for the Coprocessor
Since DHCP mainly relies on the MAC address, the coprocessors’ MAC addresses
(MicMacAddress) listed in the micN.conf should be unique and permanent. One way to
ensure this is to retain a permanent list of the coprocessors’ MAC addresses, and set the
configuration such that it will never change.

Steps to do this:

1) Create a list of MAC addresses for the available coprocessor. This can be found in the
micN.conf that is located in the /etc/mpss/ folder.

 Example of the list in a text file:

node1-micN ca:7a:05:e1:52:65 192.168.0.2

node1-micN 76:f2:07:ff:00:3c 192.168.0.3

node2-micN fe:fc:cd:15:95:8a 192.168.0.5

node2-micN 72:0c:4c:b7:94:86 192.168.0.6

2) If this is not the initial DHCP setup for the coprocessors, use the text file above and
replace the assigned MicMacAddress to the one on the list. This will remove the need
to constantly update the DHCP reservation and the name resolution setup.

Intel MPSS Cluster Setup Guide

User's Guide 129

20.7.4 Modify the DHCP Configuration File
Add the list of DHCP configuration for the coprocessors to the dhcp configuration file.
DHCP configuration should already be available for the compute node. Configuration
format should be similar to the basic DHCP setup for compute nodes. For example:

host mnode01-micN.mynetwork {

 hardware ethernet ca:7a:05:e1:52:65;

 fixed-address 192.168.0.2;

}

host mnode01-micN. mynetwork {

 hardware ethernet 76:f2:07:ff:00:3c;

 fixed-address 192.168.0.3;

}

host mnode02-micN. mynetwork {

 hardware ethernet fe:fc:cd:15:95:8a;

 fixed-address 192.168.0.5;

}

host mnode02-micN. mynetwork {

 hardware ethernet 72:0c:4c:b7:94:86;

 fixed-address 192.168.0.6;

}

20.7.5 Modify the Name Resolution Configuration File
For every coprocessor, make sure the name resolution is set. This will remove the need
to guess or dig through the message log to figure out what IP address a particular
coprocessor was assigned. Setting up the name resolution on the coprocessor is the same
process for the regular compute nodes.

For example:

node01-micN IN A 192.168.0.2

node01-micN IN A 192.168.0.3

node02-micN IN A 192.168.0.5

node02-micN IN A 192.168.0.6

20.8 Set Up Mounted File System
1) Make sure the filesystem that needs to be mounted is accessible from the

coprocessor and properly exported.

2) Edit the /var/mpss/micN/etc/fstab (and /var/mpss/micN/etc/fstab when micN is
available) to ensure the mounted /home filesystem is listed. For example:

(Intel® MPSS)

130 Document Number: 330076-001US

 192.168.0.254:/home /home nfs rsize=8192,wsize=8192,nolock,intr,hard 0 0

20.9 Intel® Xeon Phi™ Coprocessor User Access
Running Intel® MPI requires user access. Intel MPSS service will automatically set up the
passwordless authentication if the rsa key for the user has been created before 1service
mpss start is invoked.

Alternatively, users can be added later by specifying the useradd option that is provided
by the micctrl tool.

20.10 Starting Intel MPSS Service
At this point, all necessary configurations should be set up and Intel MPSS service is ready
to be started.

Start the Intel MPSS service:

[host]# 1service mpss start

20.11 Starting OFED-MIC Service
Do this only if OFED* 1.5.4.1 and ofed-mic RPMs are installed.

1) Restart the openibd service.

[host]# 1service openibd restart

2) Start OFED-MIC service:

[host]# 1service ofed-mic start

20.12 Ensure Services Are Running After Reboot

NOTE: The following should only be applied if the compute node is not being reimaged on every

reboot, and all configurations are set.

To automatically run Intel MPSS service:

[host]# chkconfig MPSS on

To automatically run OFED-MIC service:

[host]# chkconfig ofed-mic on

Sample Cluster Configuration Scripts

User's Guide 131

21 Sample Cluster Configuration Scripts

21.1 ifcfg-br0 Configuration File
DEVICE=br0

TYPE=Bridge

ONBOOT=yes

DELAY=0

NM_CONTROLLED="no"

MTU=9000

BOOTPROTO=dhcp

NOZEROCONF=yes

21.2 ifcfg-eth0 Configuration File
DEVICE=eth0

ONBOOT=yes

BRIDGE=br0

MTU=9000

21.3 Hostlist Configuration File
192.168.0.1 node1

192.168.0.2 node1-micN

192.168.0.3 node1-micN

192.168.0.5 node2

192.168.0.6 node2-micN

(Intel® MPSS)

132 Document Number: 330076-001US

192.168.0.7 node2-micN

192.168.0.9 node3

192.168.0.10 node3-micN

192.168.0.11 node3-micN

192.168.0.13 node4

192.168.0.14 node4-micN

192.168.0.15 node4-micN

21.4 OFED* 1.5.4.1 Custom Configuration Answer
kernel-ib=n

core=y

mthca=y

mlx4=y

mlx4_en=y

ipoib=y

sdp=y

srp=y

srpt=y

rds=y

kernel-ib-devel=n

libibverbs=y

libibverbs-devel=y

libibverbs-devel-static=y

libibverbs-utils=y

libibverbs-debuginfo=y

libmthca=y

libmthca-devel-static=y

Sample Cluster Configuration Scripts

User's Guide 133

libmthca-debuginfo=y

libmlx4=y

libmlx4-devel=y

libmlx4-debuginfo=y

libcxgb3=n

libcxgb3-devel=n

libcxgb3-debuginfo=n

libcxgb4=n

libcxgb4-devel=n

libcxgb4-debuginfo=n

libnes=n

libnes-devel-static=n

libnes-debuginfo=n

libipathverbs=y

libipathverbs-devel=y

libipathverbs-debuginfo=y

libibcm=y

libibcm-devel=y

libibcm-debuginfo=y

libibumad=y

libibumad-devel=y

libibumad-static=y

libibumad-debuginfo=y

libibmad=y

libibmad-devel=y

libibmad-static=y

libibmad-debuginfo=y

(Intel® MPSS)

134 Document Number: 330076-001US

ibsim=y

ibsim-debuginfo=y

ibacm=y

librdmacm=y

librdmacm-utils=y

librdmacm-devel=y

librdmacm-debuginfo=y

libsdp=y

libsdp-devel=y

libsdp-debuginfo=y

opensm=n

opensm-libs=n

opensm-devel=n

opensm-debuginfo=n

opensm-static=n

compat-dapl=y

compat-dapl-devel=y

dapl=n

dapl-devel=n

dapl-devel-static=n

dapl-utils=n

dapl-debuginfo=n

perftest=y

mstflint=y

sdpnetstat=y

srptools=y

rds-tools=y

Sample Cluster Configuration Scripts

User's Guide 135

rds-devel=y

ibutils=y

infiniband-diags=y

qperf=y

qperf-debuginfo=y

ofed-docs=y

ofed-scripts=y

infinipath-psm=y

infinipath-psm-devel=y

mpi-selector=y

mvapich_gcc=y

mvapich2_gcc=y

openmpi_gcc=y

mpitests_mvapich_gcc=y

mpitests_mvapich2_gcc=y

mpitests_openmpi_gcc=y

build32=0

prefix=/usr

mvapich2_conf_impl=ofa

mvapich2_conf_romio=1

mvapich2_conf_shared_libs=1

mvapich2_conf_ckpt=0

mvapich2_conf_vcluster=small

(Intel® MPSS)

136 Document Number: 330076-001US

21.5 Pre-Config Script for Static Bridge

Configuration
/*

* Copyright (C) 2013 Intel Corporation

*

* Intel makes no warranty of any kind regarding this code. This *

code is licensed on an "AS IS" basis and Intel will not provide *

any support, assistance, installation, training, or other *

services. Intel may not provide any updates, enhancements or *

extensions to this code. Intel specifically disclaims any *

warranty of merchantability, non-infringement, fitness for any *

particular purpose, or any other warranty. Intel disclaims all *

liability, including liability for infringement of any *

proprietary rights, relating to use of the code. No license, *

express or implied, by estoppel or otherwise, to any *

intellectual property rights is granted herein.

*/

rm -rf /etc/sysconfig/network-scripts/ifcfg-eth0

cp -f /donotremove/ifcfg-eth0 /etc/sysconfig/network-scripts/

cp -f /donotremove/ifcfg-br0 /etc/sysconfig/network-scripts/

micctrl --initdefaults

service network restart

sleep 5

Value=`ifconfig br0 | grep "inet addr" | gawk -F: '{print $2}' |

gawk '{print $1}' | awk '{print substr($0,11,4)}'`

HostIP=`ifconfig br0 | grep "inet addr" | gawk -F: '{print $2}' |

gawk '{print $1}'`

IPQuad=`ifconfig br0 | grep "inet addr" | gawk -F: '{print $2}' |

gawk '{print $1}' | awk '{print substr($0,0,9)}'`

newvalue1=`expr $Value + 1`

newvalue2=`expr $Value + 2`

micctrl --addbridge=br0 --type=External --ip=$HostIP micN micN

Sample Cluster Configuration Scripts

User's Guide 137

micctrl --network=static --bridge=br0 --

ip=$IPQuad.$newvalue1:$IPQuad.$newvalue2 micN micN

1service mpss start

21.6 Pre-Config Script for DHCP configuration
/*

* Copyright (C) 2013 Intel Corporation

*

* Intel makes no warranty of any kind regarding this code. This *

code is licensed on an "AS IS" basis and Intel will not provide *

any support, assistance, installation, training, or other *

services. Intel may not provide any updates, enhancements or *

extensions to this code. Intel specifically disclaims any *

warranty of merchantability, non-infringement, fitness for any *

particular purpose, or any other warranty. Intel disclaims all *

liability, including liability for infringement of any *

proprietary rights, relating to use of the code. No license, *

express or implied, by estoppel or otherwise, to any *

intellectual property rights is granted herein.

Intel MPSS Cluster Init Script

micctrl --cleanconfig

micctrl --initdefaults --users=overlay --pass=shadow --modhost=no -

-modcard=no

Create Bridge Configuration on MIC filesystem and generate br0 on

compute node

micctrl --addbridge=br0 --type=External --ip=dhcp --mtu=1500

Make a ifcfg file needed to add eth0 to the new bridge created by

micctrl above

echo "DEVICE=eth0

ONBOOT=yes

BRIDGE=br0

MTU=1500

" > /etc/sysconfig/network-scripts/ifcfg-eth0

(Intel® MPSS)

138 Document Number: 330076-001US

Restart networking with the new Bridge

service network restart

sleep 5

Update each card so it's part of the bridge

micctrl --network=dhcp --bridge=br0

NFS mount the head node /home onto each mic card

micctrl --addnfs=192.168.0.1:/home --dir=/home

Copy host /etc/hosts to mic card file system

cp -f /etc/hosts /var/mpss/mic0/etc

cp -f /etc/hosts /var/mpss/mic1/etc

micctrl –updateramfs

Start Intel MPSS services

1service mpss start

micctrl -w

Start infiniband and OFED services

1service openibd restart

1service ofed-mic start

Related Documentation

User's Guide 139

22 Related Documentation
This section contains a listing of MYO, COI, and SCIF documentation, as well as links to
various Intel® Xeon Phi™ Coprocessor collateral documents.

22.1 MYO Documentation
MYO is a library and API to support virtual shared memory between processes on a host
process and Intel® Xeon Phi™ coprocessor cards. MYO is supplementary to other Intel®
Xeon Phi™ hardware and software, and is intended for researchers and advanced users.

22.1.1 MYO Man Page Location
/usr/share/man/man3

22.1.2 MYO Tutorials & Other Document Location on Linux*
/usr/share/doc/myo

22.2 COI Documentation

Intel® Coprocessor Offload Infrastructure (Intel® COI) provides a set of APIs to

simplify development of tools and other applications using offload and reverse

accelerator models.

22.2.1 COI Documentation for Linux*
/usr/share/doc/intel-coi-[version number]/ -release_notes.txt
/usr/share/doc/intel-coi-[version number]/ -
MIC_COI_API_Reference_Manual_0_65.pdf

/usr/share/doc/intel-coi-[version number]/ -coi_getting_started.pdf
/usr/include/intel-coi/ -header files contain full API descriptions
/usr/share/doc/intel-coi-[version number]\tutorials\ -Full tutorials source and Makefiles

/usr/share/man/man3 -man pages

22.3 SCIF documentation
SCIF provides a mechanism for communication between the components of a distributed
application. It is intended for tools developers and application developers.

(Intel® MPSS)

140 Document Number: 330076-001US

22.3.1 SCIF User Guide
~/mpss-[version number]/docs/SCIF_UserGuide.pdf

22.3.2 SCIF Tutorials Location
/usr/share/doc/scif/tutorials

SCIF Tutorials Source:
~/mpss-[version number]/mpss-sciftutorials-doc-*.rpm

Pre-built SCIF Tutorials Binary:
~/mpss-[version number]/mpss-sciftutorials-3.*.rpm

Instructions to Build and Run the SCIF Tutorials:
/usr/share/doc/scif/tutorials/README.txt

22.3.3 SCIF Man Page Locations
/usr/share/man/man3

/usr/share/man/man9

22.4 Intel® Xeon Phi™ Coprocessor Collateral
Intel® Xeon Phi™ Coprocessor Product Brief:
https://www-ssl.intel.com/content/www/us/en/high-performance-computing/high-
performance-xeon-phi-coprocessor-brief.html

Intel® Xeon Phi™ Coprocessor Specification Update:
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
specification-update.html

Intel® Xeon Phi™ Coprocessor Safety and Compliance Guide:
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
safety-compliance-guide.html

Intel® Xeon Phi™ Coprocessor Datasheet:
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
datasheet.html

Intel® Xeon Phi™ Coprocessor Software Users Guide:
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
software-users-guide.html

Intel® Xeon Phi™ Coprocessor System Software Developers Guide:

https://www-ssl.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
https://www-ssl.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-phi-coprocessor-brief.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-specification-update.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-specification-update.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-safety-compliance-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-safety-compliance-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-software-users-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-software-users-guide.html

Related Documentation

User's Guide 141

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-
system-software-developers-guide.html

Intel® Xeon Phi™ Coprocessor Developers Quick Start Guide:
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-
start-guide

Intel® Xeon Phi™ Coprocessor System Administration Guide:
http://software.intel.com/en-us/articles/system-administration-for-the-intel-xeon-phi-
coprocessor
Intel® Xeon Phi™ Coprocessor Instruction Set Architecture Reference Manual:
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
https://www-ssl.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.html
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/system-administration-for-the-intel-xeon-phi-coprocessor
http://software.intel.com/en-us/articles/system-administration-for-the-intel-xeon-phi-coprocessor
http://software.intel.com/sites/default/files/forum/278102/327364001en.pdf

