
ANL/MCS-TM-ANL-98/xx

User’s Guide for MPE: Extensions for MPI Programs

by

Contents

Abstract 1

1 Introduction 1

2 The MPE library of useful extensions 1
2.1 Logfile Creation . 1
2.2 Logfile Formats . 2
2.3 Parallel X Graphics . 2
2.4 Other MPE Routines . 3

B Installing Java for Jumpshots 24
B.1 Java requirements . 24

C Automatic generation of profiling libraries 26
C.1 Writing wrapper deTf 1sitions . 27

D Manual Eages 30

Acknowledgments 32

References 33

iv

2.2 Logfile Formats

You can find an example of the use of the MPE graphics library in the directory mpich/
mpe/contrib/mandel. Enter

make
mpirun -np 4 pmandel

to see a parallel Mandelbrot calculation algorithm that exploits several features of the MPE
graphics library.

2.4 Other MPE Routines

Sometimes during the execution of a parallel program, you need to ensure that only a few
(often just one) processor at a time is doing something. The routines MPE_Seq_begin and
MPE_Seq_end allow you to create a “sequential section” in a parallel program.

The MPI standard makes it easy for users to define the routine to be called when an
error is detected by MPI. Often, what you’d like to happen is to have the program start
a debugger so that you can diagnose the problem immediately. In some environments, the
error handler in MPE_Errors_call_dbx_in_xterm allows you to do just that. In addition,
you can compile the MPE library with debugging code included. (See the -mpedbg

memory buffers are collected and merged in parallel during MPI Finalize. During execu-
tion, MPI Pcontrol

2.5.4 Real-Time Animation

The third library does a simple form of real-time program animation. The MPE graphics
library contains routines that allow a set of processes to share an X display that is not
associated with any one specific process. Our prototype uses this capability to draw arrows
that represent message traffic as the program runs. Note that MPI programs can generate

• F2CMPI LIBS - The compiler flag needed to link Fortran to C MPI wrapper li-
brary with all the above mentioned libraries. For MPICH, this should be -lfmpich.
Otherwise, it could be -lmpe f2cmpi, MPE’s own Fortran to C MPI wrapper library.

• FLIB PATH - The full compiler flag needed to link Fortran MPI programs with the
logging

We generate these routines by writing the “do something” parts only once, in schematic
form, and then wrapping them around the PMPI

3 Using MPE

The Multi-Processing Environment (MPE) attempts to provide programmers with a com-
plete suite of performance analysis tools for their MPI programs based on post processing

lib/ contains all the libraries that user program needs to link with.

bin/ contains all the utility programs that user needs to use.

sbin/ contains the MPE uninstall script to uninstall the installation.

share/ contains user read-only data. Besides ‘share/examples/’, user usually does not

3.4.1 Log Format Converters

clogTOslog2:

mpiexec -default -env MPE_LOGFILE_PREFIX <output-logname-prefix> \
-env TMPDIR <local-tmp-dir> : -n 32 <executable-name>

For other MPI implementations, how environmental variables are passed remains un-
changed. User needs to get familar with the environment and set the environmental variables
accordingly.

3.5.3 Viewing Logfiles

MPE’s install directory structure is the same as MPICH’s and MPICH2’s. So all MPE’s
utility programs will be located in ‘bin/

--with-fflags=MPE FFLAGS Specify extra FFLAGS to the F77 and MPI_F77 compilers,
e.g. -64 for IRIX64 F77 compiler

--with-mpiinc=MPI INC Specify compiler’s include flag for MPI include directory, e.g. -I/
pkgs/MPI/include for ‘mpi.h’

--with-mpilibs=MPI LIBS Specify compiler’s library flag for MPI libraries, e.g.

--with-java2=JAVA HOME Specify the path of the top-level directory of the Java, JDK, in-
stallation for Jumpshot-3 only. If this option or --with-java is not given, Jumpshot-
3’s configure will try to locate JDK for you to build Jumpshot-3. For performance
reason, it is recommended to use the latest Java 2, i.e. JDK-1.3.x, to build Jumpshot-
3.

--with-wishloc=WISHLOC

${MPE_SRC_DIR}/configure --with-mlilibs=-lmli \
--with-java=/usr/java-1.1.6/usr/java

make
make install PREFIX=${MPE_INSTALL_DIR}

Using MPE with LAM for fortran MPI program is not working until recently. Con-
figure options listed above enable MPE’s internal Fortran to C MPI library. To use
LAM’s Fortran to C MPI library in LAM 6.3.3 or later, ‘liblamf77mpi.a’, do

setenv MPI_CC ${LAM_INSTALL_DIR}/bin/mpicc
setenv MPI_f77 ${LAM_INSTALL_DIR}/bin/mpif77
${MPE_SRC_DIR}/configure --with-mpilibs="-L${LAM_INSTALL_DIR}/lib -lpmpi" \

--with-f2cmpilibs=-llamf77mpi \
--with-java1=/sandbox/jdk117_v3 \
--with-java2=/sandbox/jdk1.3.1

make
make install PREFIX=${MPE_INSTALL_DIR}

LAM 6.5.6 to 6.5.9 has a bug that interferes with MPE’s configure and make in
enabling byte swapping on little endian machine, e.g. intel box. For details, see

http://www.lam-mpi.org/MailArchives/lam/msg04894.php

http://www.lam-mpi.org/MailArchives/lam/msg04896.php

Solution: Upgrade to newer version of LAM.

LAM 7.0 has included ‘libpmpi.a’ into ‘libmpi.a’, so –with-mpilibs may not be
needed.

• For an existing MPICH, do

setenv MPI_CC ${MPICH_INSTALL_DIR}/mpicc
setenv MPI_F77 ${MPICH_INSTALL_DIR}/mpif77
${MPE_SRC_DIR}/configure --with-f2cmpilibs=-lfmpich \

--with-mpelibname=newMPE \
--with-java1=/sandbox/jdk117_v3 \
--with-java2=/sandbox/jdk1.3.1

make
make install PREFIX=${MPE_INSTALL_DIR}

used by itself. This is only optional and is of use only if you wish to install the MPE

from Blackdown. Using SuperX instead of Exceed causes Jumpshot-2

might expand to:

static int MPI_Send_ncalls_2;
static int MPI_Recv_ncalls_2;

(end of example)

{{fnall <function name escape> <function A> <function B> ... }}
...
{{callfn}}
...

{{endfnall}}

{{fnall}} defines a wrapper to be used on all functions except the functions
named. Wrappergen will expand into a full function definition in traditional
C format. The {{callfn}} macro tells wrappergen where to insert the call
to the function that is being profiled. There must be exactly one instance
of the {{callfn}} macro in each wrapper definition. The macro specified by
<function name escape> will be replaced by the name of each function.

Within a wrapper definition, extra macros are recognized.

{{vardecl <type> <arg> <arg> ... }}

Use vardecl to declare variables within a wrapper definition. If
nested macros request variables through vardecl with the same names,
wrappergen will create unique names by adding consecutive integers
to the end of the requested name (var, var1, var2, ...) until a unique
name is created. It is unwise to declare variables manually in a wrap-
per definition, as variable names may clash with 7ther wrappers, and

Acknowledgments

The work described in this report has benefited from conversations with and use by a large
number of people. We also thank those that have helped in the implementation of MPE,
particularly Edward Karrels.

Debbie Swider had maintained MPE in MPICH-1.2.0 and before. Omer Zaki did the
first implementation of Jumpshot, Jumpshot-2. Abhi Shandilya did the original clog2slog
converter. Anthony Chan implemented SLOG-API, extended Jumpshot-2 to Jumpshot-3 toSLOG-APIclog2slog Jumpshot-2 Jumpshot-3SLOG-API

